Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

ФАГОВЫЙ ДИСПЛЕЙ В КОНСТРУИРОВАНИИ АНТИТЕЛ С ЗАДАННЫМИ СВОЙСТВАМИ

Полный текст:


Аннотация

Уникальная особенность моноклональных антител высокоспецифично взаимодействовать с молекулярными мишенями позволила им занять ведущее положение в терапии онкологических и аутоиммунных заболеваний, стать незаменимым инструментом протеомных исследований и компонентом диагностических систем. Представлен обзор новейших литературных данных по использованию метода фагового дисплея для получения рекомбинантных антител, которые другими методами получить невозможно, а также собственные оригинальные результаты в этой области. На основании бионформационного анализа структур депонированных комплексов антител с антигенами нами создана комбинаторная библиотеки Fab фрагментов антител человека, обладающая разнообразием более 1010 независимых клонов и способная служить источником рекомбинантных антител. С использованием негативной селекции нами получены и характеризованы высокоспецифичные однодоменные антитела к альдостерон-синтазе (цитохром Р45011В2, CYP11B2), не обладающие в ИФА кросс-реактивностью с ее гомологом CYP11B1 (93% идентичности последовательностей), а также антитела к таким высокомолекулярным мишеням, как эритропоэтин, соматотропный гормон и тиреопероксидаза человека. 


Об авторах

Д. О. Дормешкин
Институт биоорганической химии НАН Беларуси
Беларусь
науч. сотрудник


Е. А. Бричко
Белорусский государственный университет
Беларусь
студент


А. А. Гилеп
Институт биоорганической химии НАН Беларуси
Беларусь
канд. хим. наук, зав. отделом молекулярных биотехнологий


С. А. Усанов
Институт биоорганической химии НАН Беларуси
Беларусь
член-кор., д-р хим. наук


Список литературы

1. Recent advances in the application of antibodies as therapeutics / R. E. Burden [et al.] // Future Med. Chem. – 2012. – Vol. 4, № 1. – P. 73–86.

2. Antibodies in diagnostics – from immunoassays to protein chips / C. A. Borrebaeck // Immunol. Today. – 2000. – Vol. 21, № 8. – P. 379–382.

3. Rodgers, K. R. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions / K. R. Rodgers, R. C. Chou // Biotechnol. Adv. – 2016. – Vol. 34, № 6. – P. 1149–1158.

4. Ecker, D. M. The therapeutic monoclonal antibody market / D. M. Ecker, S. D. Jones, H. L. Levine // MAbs. – 2015. – Vol. 7, № 1. – P. 9–14.

5. Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research / A. Asplund [et al.] // Proteomics. – 2012. – Vol. 12, № 13. – P. 2067–2077.

6. Towards a knowledge-based Human Protein Atlas / M. Uhlen [et al.] // Nat. Biotechnol. – 2010. – Vol. 28, № 12. – P. 1248–1250.

7. Buchner, J. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli / J. Buchner, R. Rudolph // Biotechnology (N Y). – 1991. – Vol. 9, № 2. – P. 157–162.

8. Rousseaux, J. Optimal conditions for the preparation of Fab and F(ab’)2 fragments from monoclonal IgG of different rat IgG subclasses / J. Rousseaux, R. Rousseaux-Prevost, H. Bazin // J. Immunol. Methods. – 1983. – Vol. 64, № 1–2. – P. 141–146.

9. Gaudreault, J. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration / J. Gaudreault [et al.] // Invest. Ophthalmol. Vis. Sci. – 2005. – Vol. 46, № 2. – P. 726–733.

10. Single-chain antigen-binding proteins / R. E. Bird [et al.] // Science. – 1988. – Vol. 242, № 4877. – P. 423–426.

11. Recombinant Immunotoxin 4D5scFv-PE40 for Targeted Therapy of HER2-Positive Tumors / E. A. Sokolova [et al.] // Acta Naturae. – 2015. – Vol. 7, № 4. – P. 93–96.

12. Phase IB trial of chimeric antidisialoganglioside antibody plus interleukin 2 for melanoma patients / M. R. Albertini [et al.] // Clin. Cancer Res. – 1997. – Vol. 3, № 8. – P. 1277–1288.

13. Vial, T. Immune-mediated side-effects of cytokines in humans / T. Vial, J. Descotes // Toxicology. – 1995. – Vol. 105, № 1. – P. 31–57.

14. An anti-MUC1-antibody-interleukin-2 fusion protein that activates resting NK cells to lysis of MUC1-positive tumour cells / C. Heuser [et al.] // Br. J. Cancer. – 2003. – Vol. 89, № 6. – P. 1130–1139.

15. Penichet, M. L. An IgG3-IL-2 fusion protein recognizing a murine B cell lymphoma exhibits effective tumor imaging and antitumor activity / M. L. Penichet, E. T. Harvill, S. L. Morrison // J. Interferon Cytokine Res. – 1998. – Vol. 18, № 8. – P. 597–607.

16. Clementschitsch, F. Improvement of bioprocess monitoring: development of novel concepts / F. Clementschitsch, K. Bayer // Microb. Cell Fact. – 2006. – Vol. 5. P. 19.

17. Development of CYB5-fusion monitoring system for efficient periplasmic expression of multimeric proteins in Escherichia coli / D. Dormeshkin [et al.] // Protein Expr. Purif. – 2016. – Vol. 128. – P. 60–66.

18. The crystal structure of a llama heavy chain variable domain / S. Spinelli [et al.] // Nat. Struct. Biol. – 1996. – Vol. 3, № 9. – P. 752–757.

19. Structural insights and biomedical potential of IgNAR scaffolds from sharks / S. Zielonka [et al.] // MAbs. – 2015. – Vol. 7, № 1. – P. 15–25.

20. Rouet, R. Generation of human single domain antibody repertoires by Kunkel mutagenesis / R. Rouet, K. Dudgeon, D. Christ // Methods Mol. Biol. – 2012. – Vol. 907. – P. 195–209.

21. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target / J. De Vos [et al.] // Expert Opin. Biol. Ther. – 2013. – Vol. 13, № 8. – P. 1149–1160.

22. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis / M. Van Roy [et al.] // Arthritis Res. Ther. – 2015. – Vol. 17. – P. 135.

23. Holz, J. B. The TITAN trial--assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura / J. B. Holz // Transfus. Apher. Sci. – 2012. – Vol. 46, № 3. – P. 343–346.

24. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection / L. Detalle [et al.] // Antimicrob. Agents Chemother. – 2015. – Vol. 60, № 1. – P. 6–13.

25. Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates / G. Rousserie [et al.] // Anal. Biochem. – 2015. – Vol. 478. – P. 26–32.

26. Schroeder, K. L. Graphene Quantum Dots for Theranostics and Bioimaging / K. L. Schroeder, R. V. Goreham, T. Nann // Pharm. Res. – 2016. – Vol. 33, № 10. – P. 2337–2357.

27. Directed evolution of PDZ variants to generate high-affinity detection reagents / M. Ferrer [et al.] // Protein Eng. Des. Sel. – 2005. – Vol. 18, № 4. – P. 165–173.

28. Hosse, R. J. A new generation of protein display scaffolds for molecular recognition / R. J. Hosse, A. Rothe, B. E. Power // Protein Sci. – 2006. – Vol. 15, № 1. – P. 14–27.

29. Sedgwick, S. G. The ankyrin repeat: a diversity of interactions on a common structural framework / S. G. Sedgwick, S. J. Smerdon // Trends Biochem. Sci. – 1999. – Vol. 24, № 8. – P. 311–316.

30. Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule / M. Friedman [et al.] // J. Mol. Biol. – 2008. – Vol. 376, № 5. – P. 1388–1402.

31. Kohler, G. Continuous cultures of fused cells secreting antibody of predefined specificity / G. Kohler, C. Milstein // Nature. – 1975. – Vol. 256, № 5517. – P. 495–497.

32. Ruberti, F. Cloning and expression of an anti-nerve growth factor (NGF) antibody for studies using the neuroantibody approach / F. Ruberti, A. Bradbury, A. Cattaneo // Cell. Mol. Neurobiol. – 1993. – Vol. 13, № 5. – P. 559–568.

33. An improved method for generating single-chain antibodies from hybridomas / P. J. Nicholls [et al.] // J. Immunol. Methods. – 1993. – Vol. 165, № 1. – P. 81–91.

34. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13 / L. Luo [et al.] // J. Biomol. Struct. Dyn. – 2014. – Vol. 32, № 3. – P. 416–423.

35. Ikonomova, S. P. A simple and robust approach to immobilization of antibody fragments / S. P. Ikonomova, Z. He, A. J. Karlsson // J. Immunol. Methods. – 2016. – Vol. 435. – P. 7–16.

36. Toleikis, L. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells / L. Toleikis, A. Frenzel // Methods Mol. Biol. – 2012. – Vol. 907. № – P. 59–71.

37. Generation and characterization of biotinylated recombinant Fab antibody fragment against cortisol / D. O. Dor- meshkin [et al.] // Russian Journal of Bioorganic Chemistry. – 2016. – Vol. 42, № 1. – P. 7.

38. Tomita, M. Hybridoma technologies for antibody production / M. Tomita, K. Tsumoto // Immunotherapy. – 2011. – Vol. 3, № 3. – P. 371–380.

39. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface / G. P. Smith // Science. – 1985. – Vol. 228, № 4705. – P. 1315–1317.

40. Beyond natural antibodies: the power of in vitro display technologies / A. R. Bradbury [et al.] // Nat. Biotechnol. – 2011. – Vol. 29, № 3. – P. 245–254.

41. Application of phage display to high throughput antibody generation and characterization / D. J. Schofield [et al.] // Genome Biol. – 2007. – Vol. 8, № 11. – P. R254.

42. Carmen, S. Concepts in antibody phage display / S. Carmen, L. Jermutus // Brief. Funct. Genomic Proteomic. – 2002. – Vol. 1, № 2. – P. 189–203.

43. Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments / J. Jez [et al.] // J. Biol. Chem. – 2012. – Vol. 287, № 29. – P. 24313–24319.

44. Watkins, N. A. Introduction to antibody engineering and phage display / N. A. Watkins, W. H. Ouwehand // Vox Sang. – 2000. – Vol. 78, № 2. – P. 72–79.

45. Griffiths, A. D. Strategies for selection of antibodies by phage display / A. D. Griffiths, A. R. Duncan // Curr. Opin. Biotechnol. – 1998. – Vol. 9, № 1. – P. 102–108.

46. Making antibody fragments using phage display libraries / T. Clackson [et al.] // Nature. – 1991. – Vol. 352, № 6336. – P. 624–628.

47. Sok, D. HIV Broadly Neutralizing Antibodies: Taking Good Care Of The 98 / D. Sok, D. R. Burton // Immunity. – 2016. – Vol. 45, № 5. – P. 958–960.

48. Recombinant anti-P protein autoantibodies isolated from a human autoimmune library: reactivity, specificity and epitope recognition / S. Zampieri [et al.] // Cell. Mol. Life Sci. – 2003. – Vol. 60, № 3. – P. 588–598.

49. Hoogenboom, H. R. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro / H. R. Hoogenboom, G. Winter // J. Mol. Biol. – 1992. – Vol. 227, № 2. – P. 381–388.

50. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides / A. Knappik [et al.] // J. Mol. Biol. – 2000. – Vol. 296, № 1. – P. 57–86.

51. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties / T. Tiller [et al.] // MAbs. – 2013. – Vol. 5, № 3. – P. 445–470.

52. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies / C. Rothe [et al.] // J. Mol. Biol. – 2008. – Vol. 376, № 4. – P. 1182–1200.

53. Construction of a Semisynthetic Human VH Single-Domain Antibody Library and Selection of Domain Antibodies against alpha-Crystalline of Mycobacterium tuberculosis / N. H. Hairul Bahara [et al.] // J Biomol Screen. – 2016. – Vol. 21, № 1. – P. 35–43.

54. Eteshola, E. Isolation of scFv fragments specific for monokine induced by interferon-gamma (MIG) using phage display / E. Eteshola // J. Immunol. Methods. – 2010. – Vol. 358, № 1–2. – P. 104–10.

55. Development of a novel human scFv against EGFR L2 domain by phage display technology / L. Rahbarnia [et al.] // Curr. Pharm. Des. – 2016. – Vol. № – P.

56. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3 / R. Rauchenberger [et al.] // J. Biol. Chem. – 2003. – Vol. 278, № 40. – P. 38194–38205.

57. Padlan, E. A. Anatomy of the antibody molecule / E. A. Padlan // Mol Immunol. – 1994. – Vol. 31, № 3. – P. 169–217.

58. Padlan, E. A. Does base composition help predispose the complementarity-determining regions of antibodies to hy-permutation? / E. A. Padlan // Mol. Immunol. – 1997. – Vol. 34, № 11. – P. 765–770.

59. Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code / F. A. Fellouse [et al.] // J. Mol. Biol. – 2006. – Vol. 357, № 1. – P. 100–114.

60. Ho, S. Y. Electroporation of cell membranes: a review / S. Y. Ho, G. S. Mittal // Crit. Rev. Biotechnol. – 1996. – Vol. 16, № 4. – P. 349–362.

61. Phage display antibodies for diagnostic applications / N. H. Hairul Bahara [et al.] // Biologicals. – 2013. – Vol. 41, № 4. – P. 209–216.

62. Igawa, T. pH-dependent antigen-binding antibodies as a novel therapeutic modality / T. Igawa, F. Mimoto, K. Hattori // Biochim. Biophys. Acta. – 2014. – Vol. 1844, № 11. – P. 1943–1950.

63. De novo isolation of antibodies with pH-dependent binding properties / P. Bonvin [et al.] // MAbs. – 2015. – Vol. 7, № 2. – P. 294–302.

64. The multiple roles of histidine in protein interactions / S. M. Liao [et al.] // Chem Cent J. – 2013. – Vol. 7, № 1. – P. 44.

65. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins / S. S. Rizk [et al.] // Nat. Struct. Mol. Biol. – 2011. – Vol. 18, № 4. – P. 437–442.

66. Crystal structure of full-length KcsA in its closed conformation / S. Uysal [et al.] // Proc. Nat. Acad. Sci. U S A. – 2009. – Vol. 106, № 16. – P. 6644–6649.

67. Rainey, W. E. Adrenal zonation: clues from 11beta-hydroxylase and aldosterone synthase / W. E. Rainey // Mol. Cell. Endocrinol. – 1999. – Vol. 151, № 1–2. – P. 151–60.

68. Structural insights into aldosterone synthase substrate specificity and targeted inhibition / N. Strushkevich [et al.] // Mol. Endocrinol. – 2013. – Vol. 27, № 2. – P. 315–324.

69. Development of monoclonal antibodies against human CYP11B1 and CYP11B2 / C. E. Gomez-Sanchez [et al.] // Mol. Cell. Endocrinol. – 2014. – Vol. 383, № 1–2. – P. 111–117.

70. Application of Bio-Layer Interferometry for the analysis of protein/liposome interactions / Wallner, J. [et al.] // J. Pharm. Biomed. Anal. – 2013. – Vol. 72, № – P. 150–154.

71. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems / J. Prassler [et al.] // J. Mol. Biol. – 2011. – Vol. 413, № 1. – P. 261–278.

72. Frenzel, A. Phage display-derived human antibodies in clinical development and therapy / A. Frenzel, T. Schirrmann, M. Hust // MAbs. – 2016. – Vol. 8, № 7. – P. 1177–1194.


Дополнительные файлы

Просмотров: 17

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1561-8331 (Print)