ISSN 1561-8331(print.)

ХІМІЯ ВЫСОКАМАЛЕКУЛЯРНЫХ ЗЛУЧЭННЯЎ

POLYMER CHEMISTRY

УДК: 541(64+14):547.391.1

Поступила в редакцию 20.02.2017 Received 20.02.2017

А. А. Горбачев, Т. М. Шейпак, А. В. Данильчик, Е. В. Луценко, О. Н. Третинников

Институт физики им. Б. И. Степанова НАН Беларуси, Минск, Беларусь

ФОТОИНДУЦИРОВАННАЯ ПРИВИВОЧНАЯ ПОЛИМЕРИЗАЦИЯ НА ПОВЕРХНОСТИ ПОД ДЕЙСТВИЕМ ВЫСОКОИНТЕНСИВНОГО УФ-ИЗЛУЧЕНИЯ

Аннотация: Исследована УФ индуцированная прививочная полимеризация акриловой кислоты на поверхности пленок полипропилена под действием высокоинтенсивного (750 мВт/см²) излучения светодиодов. Время выхода реакции на насыщение составило 30 с, когда при использовании излучения с низкой интенсивностью (10–15 мВт/см²), характерного для традиционных источников УФ-излучения, время выхода на насыщение составляет десятки минут. Методом ИК-спектроскопии НПВО с использованием элементов внутреннего отражения с различной глубиной проникновения зондирующего излучения ZnSe–45° и Ge–45° было показано, что образование привитого полимера про-исходит в тонком поверхности модифицированных пленок показали, что минимальный угол смачивания (21°) достигается при невысоких значениях количества привитого полимера.

Ключевые слова: модификация, поверхность, полипропилен, прививка, фотополимеризация

Для цитирования: Фотоиндуцированная прививочная полимеризация на поверхности под действием высокоинтенсивного УФ-излучения / А. А. Горбачев [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2017. – № 3. – С. 85–89.

A. A. Gorbachev, T. M. Sheipak, A. V. Danilchyk, E. V. Lutsenko, O. N. Tretinnikov

B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk, Belarus

UV-INDUCED GRAFT POLYMERIZATION ON SURFACE UNDER HIGH-POWER UV IRRADIATION AND THE PROPERTIES OF THE SURFACE-GRAFTED POLYMER

Abstract: UV-induced graft polymerization of acrylic acid on the polypropylene film surface under high-power (750 mW/cm²) irradiation from UV-LEDs was investigated. The maximum amount of grafted polymer was reached in 30 s, while using low-power irradiation (10–15 mW/cm²) takes tens of minutes for the same amount of product. IR FTIR spectroscopy with different radiation penetration depth reflection elements of ZnSe–45° μ Ge–45° showed the grafted polymer to be formed in a thin surface layer without any significant insertion throughout the film. Contact angle for water showed a minimum (21°) at 15 s of UV-irradiation time at small amounts of grafted polymer.

Keywords: polypropylene, photopolymerization, modification, grafting, surface

For citation: Gorbachev A. A., Sheipak T. M., Danilchyk A. V., Lutsenko E. V., Tretinnikov O. N. UV-induced graft polymerization on surface under high-power UV irradiation and the properties of the surface-grafted polymer geochemistry. *Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya khimichnykh navuk.* [Proceedings of the National Academy of Sciences of Belarus, chemical series], 2017, no. 3, pp. 85–89 (In Russian).

Введение. Фотоиндуцированная прививочная полимеризация на поверхности – простой, неразрушающий, экономичный и экологически чистый способ прививки функциональных полимеров к поверхности полимерных материалов, получения на этой основе селективных мембран, сорбентов, биосовместимых и биоактивных материалов, микрожидкостных и сенсорных устройств [1]. Для получения поверхностно-привитых полимеров этим способом используют УФ-излучение ртутных ламп на длине волны 365 нм. Из-за относительно низкой интенсивности УФ-излучения (~1–10 мВт/см²) длительность полимеризации достигает десятков минут, что ограничивает области ее промышленного применения. Недавно с использованием источника на высокомощных УФ светодиодах, дающего излучение на длине волны 365 нм с интенсивностью до 200 мВт/см², нами достигнуто сокращение длительности прививочной полимеризации до 1,5–2 мин [2]. Однако этого недостаточно для полноценной реализации процесса в непрерывном рулонном (roll-to-roll) режиме. В целях дальнейшего сокращения длительности прививочной фотополимеризации на поверхности нами изготовлен светодиодный источник, дающий излучение на длине волны 365 нм с интенсивностью до 800 мВт/см², изучена кинетика полимеризации, индуцируемой этим излучением и исследованы характеристики образующегося поверхностно-привитого полимера.

Экспериментальная часть. Двухосно-ориентированную пленку полипропилена (ПП) толщиной 40 мкм производства ОАО «Могилевский завод искусственного волокна» перед применением очищали экстракцией ацетоном в аппарате Сокслета. Акриловая кислота (АК) и бензофенон (БФ) с чистотой не менее 99% были получены от Sigma-Aldrich.

Прививочную полимеризацию проводили по методу «тонкого слоя» [3]. Пленку ПП помещали в 5%-ный раствор БФ в ацетоне на 5 мин, сушили 20 мин на воздухе, укладывали на кварцевую пластину, наносили на поверхность пленки каплю 20%-ного водного раствора АК заданного объема и накрывали второй кварцевой пластиной так, чтобы раствор равномерно распределился по поверхности пленки. При этом толщина слоя раствора мономера составляла 7–10 мкм. Полученную кювету фиксировали по краям металлическими зажимами и помещали под источник УФ-излучения. Температуру в зоне реакции поддерживали равной 35–40 °С. После облучения пленку извлекали из кюветы, промывали в дистиллированной воде и сушили на воздухе.

Светодиодным УФ-источником излучения служил излучатель собственного изготовления, состоящий из шестидесяти светодиодов NC4U133A-E (Nichia, Япония), излучающих на длине волны 365 нм. Максимальная рабочая оптическая мощность одного светодиода – 2 Вт. Излучатель дает равномерную засветку на расстоянии от светодиодов 3 см, при этом площадь засветки равна 150 см², максимальная рабочая плотность мощности излучения 800 мВт/см².

ИК-спектры поверхности пленок получали методом нарушенного полного внутреннего отражения (НПВО) с помощью приставки Smart ARK (Thermo Spectra-Tech, США) с элементами внутреннего отражения (ЭВО) из кристаллов ZnSe и Ge с углом отражения 45°. Статические углы смачивания для воды на поверхности пленок измеряли проекционным методом.

Результаты и их обсуждение. На рис. 1 представлены ИК-спектры НПВО, полученные с помощью ЭВО ZnSe–45° и Ge–45° с поверхности исходной пленки ПП и пленок, модифицированных УФ-индуцированной прививочной полимеризацией АК при плотности мощности излучения 750 мВт/см² и различных временах УФ-облучения. Спектры нормированы на интенсивность полосы поглощения ПП при 1376 см⁻¹. В спектрах модифицированных пленок ПП имеются полосы поглощения при 1710 и 1247 см⁻¹, характерные для полиакриловой кислоты (ПАК), что указывает на образование привитого полимера. При увеличении продолжительности облучения интенсивность полос поглощения ПАК по отношению к интенсивности полос ПП возрастает в результате роста количества привитого полимера.

Эффективная глубина проникновения зондирующего излучения в исследуемые пленки для ЭВО ZnSe-45° в 3 раза больше чем для ЭВО Ge-45° (1,2–1,9 и 0,37–0,60 мкм в спектральном диапазоне 1800–1100 см⁻¹ соответственно) [4]. Из рассматриваемых спектров следует, что при увеличении глубины зондирования путем замены ЭВО Ge-45° на ЭВО ZnSe-45° относительная интенсивность полосы поглощения привитой ПАК при 1710 см⁻¹ значительно уменьшается. Это показывает, что образование привитого полимера происходит в тонком поверхностном слое без существенного проникновения в объем пленки.

На рис. 2 представлены зависимости количества привитой ПАК, образующейся на пленках ПП при плотности мощности УФ-излучения 750 мВт/см², и краевого угла смачивания для воды на этих пленках от времени облучения. Количество привитого полимера определяли в относительных единицах из ИК-спектров НПВО, зарегистрированных с помощью ЭВО ZnSe–45°, по формуле

$$G = A_{1710} / (A_{1710} + A_{1376}), \tag{1}$$

где A_{1710} и A_{1376} – интенсивности полосы ПАК при 1710 см⁻¹ и полосы ПП при 1376 см⁻¹ соответственно. Видно, что количество привитого полимера монотонно увеличивается и уже через 30 с достигает значения 0,65, которое при использовании источников УФ-излучения с меньшей плотностью мощности является максимальным (выход реакции на насыщение) и достигается за время от полутора до десятков минут [2].

Рис. 1. ИК-спектры НПВО исходных пленок ПП и пленок, модифицированных прививочной фотополимеризацией АК при времени УФ-облучения 10 (3, 4) и 25 с (5, 6), зарегистрированые с помощью ЭВО ZnSe–45° (1, 3, 5) и Ge–45° (2, 4, 6)

Fig. 1. FTIR spectra of original PP films and the films modified with AA by UV-induced graft polymerization at irradiation times of 10 s (3, 4) and 25 s (5, 6) registered with ZnSe-45° (1, 3, 5) and Ge-45° (2, 4, 6) reflection elements

Угол смачивания для исходной (непривитой) пленки ПП составляет 95°. Через 5 с УФ-облучения угол смачивания снижается до ~60°, так как изначально гидрофобная поверхность пленки ПП покрывается гидрофильными цепями поверхностно-привитой ПАК. При увеличении продолжительности реакции до 15 с угол смачивания снижается до 21°. Это объясняется тем, что при увеличении количества привитого полимера в процессе УФ-облучения поверхность пленки становится еще более гидрофильной. Однако при дальнейшем увеличении продолжи-

Рис. 2. Зависимости количества привитой ПАК *G* (*1*), образующейся при интенсивности УФ-излучения 750 мВт/см², и краевого угла смачивания для воды θ_w (2) от времени облучения

Fig. 2. The amount of grafted PAA G (1) formed at UV irradiation intensity of 750 mW/cm² and contact angle for water θ_w (2) versus irradiation time

тельности УФ-облучения смачивание поверхности водой ухудшается (θ_w увеличивается), несмотря на то что количество прививки продолжает расти. Ухудшение смачивания может быть вызвано тем, что при высоких плотностях прививки усиливаются когезионные взаимодействия в привитом полимере, приводящие к уменьшению его взаимодействия со смачивающей жидкостью [5], или образуются кластеры привитых цепей, из-за чего поверхность становится химически и морфологически гетерогенной [6].

Заключение. С использованием УФ-излучения с плотностью мощности 750 мВт/см² осуществлена прививочная фотополимеризация АК на поверхности пленок ПП. Время выхода реакции на насыщение составило 30 с, что в разы меньше, чем при использовании источников с меньшей интенсивностью УФ-излучения. Методом ИК спектроскопии НПВО с использованием элементов внутреннего отражения ZnSe–45° и Ge–45°, дающих различную глубину проникновения зондирующего излучения, установлено, что прививка протекает на поверхности модифицируемой пленки ПП без заметного проникновения в объем. Минимальный угол смачивания для воды на модифицированных пленках составил 21° и был достигнут при времени облучения 15 с, что в 2 раза меньше, чем время выхода реакции на насыщение. При бо́льших временах облучения (большей плотности прививки) смачиваемость поверхности водой ухудшается (угол смачивания растет) из-за усиления когезионных взаимодействий между плотно привитыми цепями.

Благодарности. Работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект X15M-062).

Статья подготовлена по материалам доклада, представленного на конференции «Молодежь в науке – 2016», 22–25 ноября 2016 г. Acknowledgements. This work has been performed with a financial support of Belarusian Republican Foundation for Fundamental Research (grant № X15M-062).

This article is based on the materials presented at the conference «Youth in science – 2016», November $22-25^{\text{th}}$, 2016.

Список использованных источников

1. Developments and new applications of UV-induced surface graft polymerizations / J. Deng [et al.] // Prog. Polym. Sci. – 2009. – Vol. 34, № 2. – P. 156–193.

2. Фотоиндуцированная прививочная полимеризация на поверхности с использованием излучения высокомощных ультрафиолетовых светодиодов / О. Н. Третинников [и др.] // Высокомол. соед. – 2016. – Т.58, №3. – С. 231–237.

3. Третинников, О. Н. Инициированная бензофеноном прививочная фотополимеризация акриловой кислоты на поверхности полиэтилена из водного раствора мономера без его деаэрации / О. Н. Третинников, В. В. Пилипенко, Л. К. Приходченко // Высокомол. соед. Б. – 2012. – Т. 54, № 9. – С. 1458–1465.

4. Харрик, Н. Спектроскопия внутреннего отражения / Н. Харрик. – М.: Мир, 1970. – 335 с.

5. Tretinnikov, O.N. Hydrogen bonding and wettability of surface-grafted organophosphate polymer / O.N. Tretinnikov, Y. Ikada // Macromolecules. – 1997. – Vol. 30, № 4. – P. 1086–1090.

6. Hydrophilic and adhesive properties of polyethylene plates grafted with hydrophilic monomers / K. Yamada [et al.] // Journal of applied polymer science. – 1992. – T. 46, №. 6. – C. 1065–1085.

References

1. Deng J., Wang L., Liu L., Yang W., "Developments and new applications of UV-induced surface graft polymerizations", *Progress in Polymer Science*, 2009, vol. 34, no. 2, pp. 156–193.

2. Tretinnikov O. N., Gorbachev A. A., Lutsenko E. V., Danil"chik A. V., Shkrabatovskaia L. V., Prikhodchenko L. K., "Photoinduced graft polymerization on a surface using radiation from high-power ultraviolet light-emitting diodes", *Vysokomolekuliarnye soedineniia. Seriia B* [Polymer Science Series B], 2016, vol. 58, no. 3, pp. 231–237.

3. Tretinnikov O. N., Pilipenko V. V., Prikhodchenko L. K., "The grafted photopolymerization of acrylic acid initiated by benzophenone on the surface of polyethylene from an aqueous solution of a monomer without its deaeration", *Vysokomolekuliarnye soedineniia. Seriia B* [Polymer Science Series B], 2012, vol. 54, no. 9, pp. 1458–1465.

4. Kharrik N., Spektroskopiia vnutrennego otrazheniia [Internal reflection spectroscopy], Mir, Moscow, RU, 1970.

5. Tretinnikov O.N., Ikada Y., "Hydrogen bonding and wettability of surface-grafted organophosphate polymer", *Macromolecules*, 1997, vol. 30, no. 4, pp. 1086–1090.

6. Yamada K., Tsutaya H., Tatekawa S., Hirata M., "Hydrophilic and adhesive properties of polyethylene plates grafted with hydrophilic monomers", *Journal of applied polymer science*, 1992, vol. 46, no. 6, pp. 1065–1085.

Информация об авторах

Горбачев Александр Александрович – мл. науч. сотрудник, Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: a.gorbachev@ifanbel.bas-net.by.

Шейпак Татьяна Михайловна – мл. науч. сотрудник, Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: tatjana-shejjpak@mail.ru.

Данильчик Александр Викторович – науч. сотрудник, Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: a.danilchyk@ifanbel.bas-net.by.

Луценко Евгений Викторович – канд. физ.-мат. наук, доцент, ведущий науч. сотрудник, Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: e.lutsenko@ifanbel.bas-net.by.

Третинников Олег Николаевич – д-р физ.-мат. наук, зав. лаб., Институт физики им. Б. И. Степанова НАН Бе-ларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: o.tretinnikov@ifanbel. bas-net.by.

Information about the authors

Alexander A. Gorbachev – Junior researcher, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: a.gorbachev@ifanbel.bas-net.by.

Tatjana M. Sheipak –Junior researcher, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: tatjana-shejjpak@mail.ru.

Alexander V. Danylchyk – Researcher, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: a.danilchyk@ifanbel.bas-net.by.

Evgeniy V. Lutsenko – Ph. D. (Physics and Mathematics), Associate Professor, Senior researcher, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: e.lutsenko@ifanbel.bas-net.by.

Oleg N. Tretinnikov – D. Sc. (Physics and Mathematics), Head of Laboratory, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: o.tretinnikov@ifanbel.bas-net.by.