УДК 535.514.4:536.2

С. Н. ШАХАБ¹, Х. А. АЛМОДАРРЕСИЕ¹, В. М. ЗЕЛЕНКОВСКИЙ¹, В. Е. АГАБЕКОВ²

КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ АЗОСОЕДИНЕНИЙ, ПОГЛОЩАЮЩИХ В БЛИЖНЕЙ ИК-ОБЛАСТИ СПЕКТРА

¹Институт физико-органической химии НАН Беларуси ²Институт химии новых материалов НАН Беларуси

Введение. Ранее [1, 2] нами были получены пленочные поляризаторы на основе поливинилового спирта (ПВС) и органических дихроичных красителей, поглощающих в широком спектральном диапазоне (280–700 нм). Разработка новых технологических процессов электронной промышленности требует расширить рабочий диапазон работы поляризаторов в сторону более длинных волн, охватывающих ближнюю ИК-область (800–1100 нм) спектра. Синтез красителей, поглощающих в данной области спектра, является дорогостоящим и многостадийным процессом. Преимущества использования квантово-химических методов в расчете геометрических параметров, электронных спектров и спектров поглощения органических соединений несомненны, поскольку именно они позволяют полностью освободиться от экспериментальной информации.

Для достижения намеченной цели нами смоделированы 10 соединений, поглощающих в указанном диапазоне спектра. Выбор предложенных структур связан со следующими факторами.

1. Молекула должна быть максимально плоской, вытянутой и с минимальным количеством функциональных групп во избежание пространственных «помех» [3]. Конформация молекул органических соединений оказывает сильное влияние на их цвет, способность флуоресцировать, растворимость и интенсивность поглощения [4]. Если молекула перестает быть плоской, то происходит сдвиг λ_{max} в коротковолновую область; если же происходит изменение валентных углов без существенного нарушения плоской формы молекулы, то имеет место «углубление» цвета. В первом случае это связано с частичным или полным разобщением отдельных участков цепи сопряжения вследствие нарушения копланарности молекулы из-за поворота одних ее частей по отношению к другим вокруг одинарной –С–С-связи. Например, молекулы дигидрофенантрена (267 нм) и перилена (432 нм), имеющие плоскую форму, поглощают свет в более длинноволновой области, чем бифенил (251 нм) и бинафтил (291 нм), у которых возможен поворот вокруг бинарной связи, нарушающий сопряжение π -электронов двух ароматических ядер [5].

2. Наличие в молекуле соединения протяженной системы сопряженных двойных (–CH=CH– и –N=N–) и одинарных связей. Известно [4], что максимальное сопряжение кратных связей достигается при плоском строении молекулы, так как при этом оси *p*-орбитали параллельны и перекрываются в максимальной степени. По мере удлинения сопряженной цепочки имеет место систематическое смещение полосы поглощения в длинноволновую часть спектра.

3. Отсутствие объемных заместителей. В тех случаях, когда в сопряженной системе или по соседству с ней имеются объемные заместители, линейность молелулы может нарушаться. Причиной отклонений от оптимальной конформации молекулы являются стерические факторы и взаимное отталкивание атомов, непосредственно друг с другом не связанных [3].

4. Наличие электронодонорных и электроноакцепторных заместителей в молекуле сопровождается смещением полосы поглощения в длинноволновую часть спектра за счет делокализации π -электронов в основном состоянии [3]. Важным фактором влияния электронодонорных и электроноакцепторных заместителей на электронный спектр поглощения является снятие запретов по симметрии на вероятность электронных переходов. Введение заместителей увеличивает интенсивность поглощения света. Так, молярный коэффициент поглощения (ϵ_{max}) фенола в 7 раз, нитробензола в 45, 4-нитрофенола в 56, 4-нитроанилина в 72 раза больше ε_{max} бензола (4,7×10⁴) (для длинноволновых максимумов). Усиление электронодонорных и электроноакцепторных свойств одновременно с «углублением» цвета увеличивает и интенсивность поглощения. Для 4 нитрофенолят-аниона ε_{max} в 1,9 раза превосходит ε_{max} нитрофенола (1,9×10⁴). Напротив, утрата электронодонорных свойств аминогруппы в результате ионизации в кислой среде приводит к уменьшению интенсивности поглощения: если ε_{max} анилина в 8 раз больше, чем ε_{max} бензола, то анилиний-катион поглощает практически с той же интенсивностью, что и бензол [4].

Цель данной работы – квантово-химическое моделирование азосоединений, поглощающих в ближней ИК-области спектра, и выбор наиболее перспективных для изготовления соответствующих поляризаторов.

Методика расчетов. Для расчета стартовой геометрии молекул выбрали метод молекулярной механики (MM⁺), а дальнейшую оптимизацию геометрических параметров соединений проводили методом HF/6-311G* с помощью программного пакета Gaussian 09. Для визуализации результатов использовали программу GaussView 05. Предварительный и оценочный расчет электронных спектров молекул проводили полуэмпирическим методом ZINDO, адаптированным для расчета абсорбционных спектров органических и неорганических веществ. Для уточненного расчета электронных спектров структур, подлежащих синтезу, применяли неэмпирический метод HF с использованием трехэкспоненциального базисного набора 6-311G*. Масштабирующий коэффициент программы при расчете спектров в случае ZINDO и HF/6-311G* равен 0,89 и 0,95 соответственно. Ab initio и полуэмпирические методы [6-8] для нахождения стандартных геометрических параметров (длина и угол связи), абсорбционных (УФ, видимого и ИК-спектров), ИК- и ЯМР-спектров органических структур использовали для расчета изучаемых азосоединений. Для расчета возбужденных состояний применяли метод HF с явной зависимостью от времени (TDHF). Ранее [7, 8] на примере красителей класса азобензола и бифенила было установлено, что неэмпирический TDHF метод более корректно по сравнению с методом TDDFT описывает УФ-, ЯМР- и ИК-спектры молекул красителей, содержащих π - π переходы.

Результаты расчета электронных спектров изученных структур методами ZINDO и HF/6– 311G* приведены в табл. 1. В качестве примера рассчитанный теоретически абсорбционный спектр молекулы 2 методом HF/6–311G* представлен на рисунке.

Результаты исследований и их обсуждение. Все рассчитанные азосоединения поглощают в интервале 833–1056 нм при силе осциллятора (f) = 1,05–1,71 (табл. 1).

В электронном спектре соединения 2 в ИК-области имеется один четкий пик при 967 нм (табл. 2).

Рассчитанный электронный спектр молекулы 2 методом HF/6-311G*

Таблица 1. Рассчитанные электронные спектры смоделированных молекул методами ZINDO и HF/6–311G*

Номер соеди- нения	Соединение	Максимум поглощения (λ_{max}), нм *	Сила осциллятора (f) *	Разложение волновых функций по однократно воз- бужденной конфигу- рации **
1	^{02N} 02N N 6=fi-fi-fi-fi-n N N 0-H 4-((1E)-(6-((E)-(3,4-динитрофенил)диазенил)гекса-1,3,5-триен-1- ил)диазенил)фенол	896–888	1,89–1,71	+ 0,12 (72→78) + 0,67 (73→75)
2	0 ₂ NN	952–967	1,14–1,05	$\begin{array}{c} -\ 0,17\ (66{\rightarrow}71)\\ +\ 0,50\ (68{\rightarrow}69)\\ -\ 0,40\ (68{\rightarrow}70)\\ +\ 0,16\ (68{\rightarrow}72) \end{array}$
3	^{0₂N N G H H H H H H H H H H H H H }	978–936	1,27–1,10	+ 0,16 (78 \rightarrow 83) + 0,48 (80 \rightarrow 81) + 0,45 (80 \rightarrow 82) - 0,15 (80 \rightarrow 85)
4	^{0,N} N h=fi-fi=fi-fi=fi-N H0,S	964–930	1,36–1,11	$\begin{array}{c} -0.15 \ (78 \rightarrow 83) \\ +0.47 \ (80 \rightarrow 81) \\ -0.46 \ (80 \rightarrow 82) \\ +0.13 \ (80 \rightarrow 86) \end{array}$
5	о.» 	874–847	1,34–1,27	$\begin{array}{c} + \ 0,13 \ (81 \rightarrow 85) \\ + \ 0,14 \ (82 \rightarrow 84) \\ - \ 0,24 \ (82 \rightarrow 86) \\ - \ 0,39 \ (83 \rightarrow 84) \\ + \ 0,47 \ (83 \rightarrow 85) \end{array}$
6	о ₂ N- N- fi=fi-fi=fi-h=fi-N H,N 8-((1Е)-(6-((Е)-(4-нитронафтален-1-ил)диазенил) гекса-1,3,5- триен-1-ил)диазенил)нафтален-2-амин	814852	1,28–1,28	$\begin{array}{c} + \ 0,11 \ (81 \rightarrow 85) \\ + \ 0,13 \ (82 \rightarrow 84) \\ - \ 0,24 \ (82 \rightarrow 86) \\ - \ 0,39 \ (83 \rightarrow 84) \\ + \ 0,47 \ (83 \rightarrow 85) \end{array}$

Номер соеди- нения	Соединение	Максимум поглощения (λ_{max}), нм *	Сила осциллятора (f) *	Разложение волновых функций по однократно воз- бужденной конфигу- рации **
7	оди 	857–833	1,30–1,30	$\begin{array}{c} -\ 0,10\ (82{\rightarrow}84)\\ -\ 0,11\ (82{\rightarrow}85)\\ -\ 0,25\ (82{\rightarrow}86)\\ +\ 0,36(83{\rightarrow}84)\\ +\ 0,49\ (83{\rightarrow}85) \end{array}$
8	о ₂ NN с = с с м м с = с с	1048–1030	1,58–1,68	- 0,12 (89→91) - 0,22(89→92) + 0,60 (90→91) + 0,12 (90→93) - 0,10 (90→95)
9	о ₂ NN Б=Б Б Б Б Б	1073–1056	1,58–1,34	- 0,30 (89→91) + 0,56 (90→91) - 0,10 (90→94) - 0,20 (90→95)
10	о ₂ NN - <u>Г</u> = <u>Г</u> - <u>Г</u> = <u>Г</u> - <u>Г</u> = <u>Г</u> - <u>Г</u> = <u>Г</u> - <u>N</u> - <u>N</u>	1084–1050	1,34–1,25	- 0,34 (92→94) + 0,54 (93→94) - 0,12 (93→97) - 0,14 (93→98)

Примечание. * (ZINDO – HF/6–311G*); ** (HF/6–311G*).

Таблица 2.	Рассчитанный электі	оонный спектр м	иолекулы 2 метоло	м HF/6-311G*

Длина волны (λ), нм	Энергия перехода, эВ	Разложение волновых функций по однократно возбужденной конфигурации	Сила осциллятора (f)
967	1,28	$-0,17(66 \rightarrow 71) + 0,50(68 \rightarrow 69) - 0,40(68 \rightarrow 70) + 0,16(68 \rightarrow 72)$	1,05
770	1,61	$\begin{array}{c} 0,24\ (65{\rightarrow}69) + 0,27\ (65{\rightarrow}70) + 0,37\ (66{\rightarrow}69) + 0,44\ (66{\rightarrow}70) + 0,10\ (68{\rightarrow}69) + 0,12\ (68{\rightarrow}70) \end{array}$	0,01
700	1,77	$-0,18 (66 \rightarrow 72) - 0,25 (67 \rightarrow 74) + 0,57 (68 \rightarrow 71) + 0.14 (68 \rightarrow 72) - 0,12 (68 \rightarrow 73)$	0,42
604	2,05	$-0,11\ (66 \rightarrow 71) + 0,38\ (67 \rightarrow 69) + 0,35\ (67 \rightarrow 70) + 0,38\ (67 \rightarrow 74) + 0,19\ (68 \rightarrow 72)$	0,10
594	2,09	$ \begin{array}{r} -0.10 \ (66 \rightarrow 70) - 0.33 \ (67 \rightarrow 69) - 0.31 \ (67 \rightarrow 70) + 0.38 \ (67 \rightarrow 74) + 0.19 \ (68 \rightarrow 71) \\ + 0.22 \ (68 \rightarrow 72) \end{array} $	0,43
492	2,52	$\begin{array}{c} 0,41 \ (60 \rightarrow 69) - 0,20 \ (60 \rightarrow 70) + 0,15 \ (60 \rightarrow 71) + 0,27 \ (63 \rightarrow 69) - 0,11 \ (63 \rightarrow 70) + \\ 0,16 \ (67 \rightarrow 74) + 0,15 \ (68 \rightarrow 71) - 0,22 \ (68 \rightarrow 72) \end{array}$	0,06

Поглощение при 817 нм малоинтенсивно, а при 770 нм находится на границе видимой и ближней ИК-области спектра. Пики поглощения (492-700 нм), расположенные в видимой области спектра, указывают на перспективность данного соединения при создании широкополосных пленочных поляризаторов. Полоса поглощения с максимумом при 967 нм описывается волновой функцией, состоящей из четырех конфигураций для одноэлектронных возбуждений (66→71, 68→69, 68→70 и 68→72) (табл. 2). Возбуждение электрона с 66-й занятой молекулярной орбитали (МО), на 71-ю вакантную МО дает первый вклад в полосу поглощения при 967 нм (табл. 2). Эта конфигурация соответствует электронному возбуждению в фрагменте, содержащем –N=N- связь. Если в 66-й, занятой МО, электронное облако локализовано вокруг –N=N- связи, то в 71-й вакантной МО оно находится у фрагмента, содержащего –С=О- связь. Полоса поглощения (967 нм) включает и возбуждение 68-й, занятой МО, на 70-ю и 72-ю вакантные МО (табл. 2). Данные конфигурации соответствуют перераспределению электронного облака с –NO₃-группы по всей молекуле. Возбуждение электрона с 68-й, занятой МО, на 69-ю вакантную МО дает основной вклад в формировании первой полосы поглощения при 967 нм. Низкое значение энергии перехода электрона, равное 1,28 эВ (табл. 2), свидетельствует об энергетической «выгодности» данного возбужденного состояния молекулы.

Молекула 2 является «жестким» электрофилом, так как энергетическая щель между положениями занятой МО и вакантной МО превышает 1 эВ ($\Delta E = E_{_{\rm HBMO}} - E_{_{\rm B3MO}} = -1,634+8,471 = 6,837$ эВ). «Жесткость» молекулы 2 рассчитывали по формуле Пирсона [9]: $\eta = (E_{_{\rm HBMO}} - E_{_{\rm B3MO}}) / 2 = 6,837 / 2 = 3,418$ эВ.

Заключение. Смоделированы и теоретически рассчитаны азосоединения, поглощающие в ближней ИК-области спектра. Методами ZINDO и HF в базисе 6–311G* проведены оценочный и уточненный расчеты их электронных структур. Установлено, что теоретически смоделированные азосоединения поглощают в интервале 833–1056 нм при f = 1,05-1,71. Рассчитаны их электрофильные и электродонорные свойства. Показано, что молекула (1E)-1-(2-метоксифенил)-2-(6-((E)-(4-нитрофенил)диазенил)гекса-1,3,5-триен-1-ил)диазена является «жестким» электрофилом.

Литература

1. Агабеков В. Е., Арико Н. Г., Шахаб С. Н., Филиппович Л. Н., Малашко П. М. // Докл. БГУИР. 2008. № 5. С. 109–118. 2. Алмодарресие Х. А., Шахаб С. Н., Филиппович Л. Н., Арико Н. Г., Агабеков В. Е. // Вестник МГОУ. Сер. Физ. Математика. 2013. № 1. С. 82–90.

3. Киприанов А. И., Дядюша Г. Г., Михайленко Ф. А. // Успехи химии. 1966. № 5. С. 823–852.

4. Киприанов А. И. // Успехи химии. 1971. № 7. С. 1283–1308.

5. Хедвиг П. Теория возмущений молекулярных орбиталей в органической химии: Пер. с англ. М., 1977.

6. Emami M., Teimouri A. // J. of Non-Oxide Glasses. 2009. Vol.1, N 3. P. 191-203.

7. Алмодарресие Х. А., Шахаб С. Н., Зеленковский В. М., Арико Н. Г., Филиппович Л. Н., Агабеков В. Е. // Жур. прикл. спектр. 2014. Т.81, № 1. С. 42–47.

8. Алмодарресие Х. А., Шахаб С. Н., Зеленковский В. М., Агабеков В. Е. // Жур. прикл. спектр. 2014. Т.81, № 1. С. 181–183.

9. Geerlings P., Langenaeker W., De Proft F., Baeten A. // Molecular electrostatic potentials: concepts and applications / J. S. Murrau, K. Sen Eds. / Theoretical and computational chemistry. 1996. Vol. 3. Amsterdam, Lausanne, N. Y., Oxford, Shannon, Tokyo: Elsevier Sci. B. V. P. 587–617.

S. N. SHAHAB, H. A. ALMODARRESIE, V. M. ZELENKOVSKII, V. E. AGABEKOV

QUANTUM-CHEMICAL MODELLING OF AZO COMPOUNDS ABSORBING IN NEAR IR RANGE

Summary

The results for quantum chemical studies of azo dyes absorbing in near IR spectral band, obtained by semiempirical ZINDO method and non-empirical SCF MO LCAO method, have been summarized. It has been found that theoretically modelled structures absorb at 833-1056 nm with f = 1,05-1,71.