ISSN 1561-8331 (Print) ISSN 2524-2342 (Online)

АРГАНІЧНАЯ ХІМІЯ

ORGANIC CHEMISTRY

УДК 547.92 https://doi.org/10.29235/1561-8331-2023-59-3-202-210 Поступила в редакцию 30.01.2023 Received 30.01.2023

В. А. Хрипач, В. Н. Жабинский, Е. В. Сикоров, С. И. Лазарев

Институт биоорганической химии Национальной академии наук Беларуси, Минск, Беларусь

СИНТЕЗ 22- И 23-ДЕГИДРОКСИБРАССИНОСТЕРОИДОВ СТИГМАСТАНОВОГО РЯДА

Аннотация. Осуществлен синтез ранее неописанных 22- и 23-дезоксианалогов гомокастастерона, позволяющий получить целевые соединения без замены углеродного скелета боковой цепи. Ключевыми реакциями в их синтезе стали раскрытие эпоксидного цикла и радикальное дебромирование.

Ключевые слова: брассиностероиды, гомокастастерон, эпоксиды, дебромирование

Для цитирования. Синтез 22- и 23-дегидроксибрассиностероидов стигмастанового ряда / В. А. Хрипач [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2023. – Т. 59, № 3. – С. 202–210. https://doi.org/10.29235/1561-8331-2023-59-3-202-210

V. A. Khripach, V. N. Zhabinskii, E. V. Sikorov, S. I. Lazarev

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus

SYNTHESIS OF 22- AND 23-DEHYDROXYBRASSINOSTEROIDS OF THE STIGMASTANE SERIES

Abstract. The synthesis of previously undescribed 22- and 23-deoxyanalogues of homocastasterone has been carried out, which makes it possible to obtain target compounds without replacing the carbon skeleton of the side chain. The key reactions in their synthesis were epoxy ring opening and radical debromination.

Keywords: brassinosteroids, homocastasterone, epoxides, debromination

For citation. Khripach V. A., Zhabinskii V. N., Sikorov E. V., Lasarev S. I. Synthesis of 22- and 23-dehydroxybrassinosteroids of the stigmastane series. *Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings* of the National Academy of Sciences of Belarus. Chemical series, 2023, vol. 59, no. 3, pp. 202–210 (in Russian). https://doi. org/10.29235/1561-8331-2023-59-3-202-210

Введение. Выделение в 1979 г. из пыльцы рапса брассинолида положило начало широкомасштабным исследованиям нового класса растительных гормонов, получивших название брассиностероиды (БС) [1]. К настоящему времени известно более 60 представителей этого класса фитогормонов [2]. Характерной структурной особенностью БС является боковая цепь **3**, содержащая 22R,23R-диольную группировку. Биосинтез этого фрагмента молекулы достаточно хорошо изучен на примере БС с кампестановым углеродным скелетом **1** (рис. 1). С-22 и С-23 гидроксильные группы в стероиды с боковой цепью **1** (R = α -Ме, кампестерин, кампестанол, 6-оксокампестанол) последовательно вводятся под действием цитохром Р450-зависимых монооксигеназ [3]. В растительных источниках обнаружены соответствующие биосинтетические предшественники брассинолида, включая (22*S*)-22-гидроксикампестерин, 6-деоксокатастерон и катастерон [4–6]. Аналогичные превращения БС стигмастанового ряда изучены значительно меньше.

Необходимым условием исследований биосинтеза БС является наличие предполагаемых участников этих процессов в качестве стандартов. Следует отметить, что построение структурного фрагмента **3** является сравнительно простой задачей, поскольку 22R,23R-диольная группировка может быть введена в одну стадию путем асимметрического гидроксилирования по Шарплесу легко доступных Δ^{22} -олефинов **4** [7]. В то же время все методы построения фрагмента

Рис. 1. Общая схема биосинтеза 22*R*,23*R*-диолов **3** и подходы к построению фрагмента **2** Fig. 1. General scheme for the biosynthesis of 22*R*,23*R*-diols **3** and approaches to the construction of fragment **2**

2 требуют проведения многих стадий, в большинстве случаев включающих образование C-22 альдегидов 5 для последующей замены углеродного скелета боковой цепи. При этом помимо построения асимметрического центра при C-22, требуется также формирование необходимой стереохимии при C-24 [8–12].

На производных кампестанового [13] и эргостанового [14] рядов было показано, что целевые спирты **2** могут быть получены без замены нативного углеродного скелета боковой цепи через стадии образования эпоксида **6** и бромгидрина **7**. Такой подход при условии выбора соответствующего Δ^{22} -олефина сводит задачу синтеза фрагмента **2** только к формированию функциональной группы при С-22. Поэтому цель настоящего исследования – разработка метода синтеза брассиностероидов стигмастанового ряда, содержащих одну гидроксильную группу в боковой цепи.

Экспериментальная часть. Спектры ЯМР ¹Н регистрировали на приборе фирмы Bruker BioSpin AVANCE 500 (500 МГц) в дейтерохлороформе. Значения химических сдвигов в спектрах ¹Н ЯМР даны относительно сигнала остаточного CHCl₃ ($\delta_{\rm H}$ 7,26). Данные спектров ¹³С ЯМР представлены относительно центрального пика CDCl₃ ($\delta_{\rm C}$ 77,16). В работе использованы реактивы фирмы Sigma-Aldrich. Протекание реакций контролировали методом TCX на пластинах Merck 60 F254. Очистку синтезируемых соединений проводили методом колоночной хроматографии на силикагеле Merck 60 (0,063–0,2 мм).

Эпоксидирование бромкетона 9. К раствору 5,0 г (10 ммоль) бромкетона 9 (получен в 4 стадии из стигмастерина 8 согласно методике [15]) в 132 мл хлороформа при перемешивании добавляли 4,5 г (20 ммоль) 77 % *м*-хлорнадбензойной кислоты. Реакционную смесь перемешивали в течение 24 ч. Затем добавляли 105 мл 10%-ного NH₄OH и экстрагировали хлороформом. Органический слой упаривали. Остаток хроматографировали на колонке с силикагелем (элюент – петролейный эфир–этилацетат, 30 : 1). Выделяли в порядке элюирования:

Фракция 1: 0,35 г (7,0 %) исходного олефина 9.

Фракция 2: 0,11 г (2,1 %) (22*R*,23*R*,24*S*)-3β-бром-22,23-эпокси-24-этил-5α-холестан-6-она 10. Т. пл. 148–150 °С (гексан–ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl3): 0,66 с (3H, 18-CH₃), 0,79 с (3H, 19-CH₃), 0,92 д (6H, 26 и 27-CH₃, *J* 7 Гц), 0,96 т (3H, 29-CH₃, *J* 7 Гц), 1,00 д (3H, 21-CH₃, *J* 5,4 Гц), 2.50 м (1H, C²²-H), 2.73 дд (1H, C²³-H, *J* 7,5, 2,4 Гц), 3.94 тт (1H, C³-H_a, *J* 12,6, 4,2 Гц).

Фракция 3: 3,98 г (77 %) смеси 3-бромэпоксидов 10 и 11.

Фракция 4: 0,04 г (0,8 %) **(22***S***,23***S***,24***S***)-3β-бром-22,23-эпокси-24-этил-5***а***-холестан-6-она 11. Т. пл. 140–142 °С (гексан–ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,65 с (3H, 18-CH₃), 0,80 с (3H, 19-CH₃), 0,92 т (3H, 29-CH₃,** *J* **7 Гц), 0,94 д (6H, 26 и 27-CH₃,** *J* **7 Гц), 1,01 д (3H, 21-CH₃,** *J* **5,4 Гц), 2,50 м (2H, C²²- и C²³-H), 3,94 тт (1H, C³-H_a,** *J* **12,6, 4,2 Гц).**

Дегидробромирование смеси 3-бромэпоксидов 10 и 11. К 4,0 г (7,9 ммоль) смеси 3-бромэпоксидов 10 и 11 приливали 94 мл *N*,*N*-диметилформамида и добавляли 6,15 г (0,83 ммоль) карбоната лития. Смесь нагревали на масляной бане с обратным холодильником при температуре 150 °C в течение 4 ч. Реакционную смесь охлаждали до комнатной температуры, выливали в воду, экстрагировали хлороформом. Экстракт сушили над безводным сернокислым натрием, растворитель упаривали, остаток очищали хроматографией на силикагеле (элюент – петролейный эфир–этилацетат, 30 : 1). Выделяли в порядке элюирования:

Фракция *I*: 1,78 г (53 %) **(22***R***,23***R***,24***S***)-эпокси-24-этил-5α-холест-2-ен-6-она 12.** Т. пл. 102–104 °С (этанол). Спектр ¹Н ЯМР δ, м.д. (CDCl3): 0,67 с (3H, 18-CH₃), 0,71 с (3H, 19-CH₃), 0,96 т (3H, 29-CH₃, *J* 7.5 Гц), 1,03 д (3H, 21-CH₃, *J* 5,5 Гц), 2,49 м (1H, C²²- или C²³-H), 2,73 дд (1H, C²²- или C²³-H, *J* 7,0, 2,4 Гц), 5.56 м (1H, C²-H), 5.68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,92, 12,42, 13,48, 16,04, 19,61, 20,14, 20,92, 21,08, 21,71, 24,19, 27,74, 29,15, 37,68, 38,50, 39,31, 39,35, 40,01, 43,11, 46,95, 48,29, 53,40, 53,85, 56,38, 61,98, 124,47, 124,95, 211,76.

Фракция 2: 0,72 г (21 %) (22*S*,23*S*,24*S*)-эпокси-24-этил-5α-холест-2-ен-6-она 13. Т. пл. 137–139 °С (этанол). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,66 с (3H, 18-CH₃), 0,70 с (3H, 19-CH₃), 1,01 д (3H, 21-CH₃, *J* 6,7 Гц), 2,50 м (2H, C²²-H и C²³-H), 5,55 м (1H, C²-H), 5.68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 12,06, 12,35, 13,47, 16,23, 19,37, 19,40, 20,96, 21,11, 21,72, 24,16, 26,86, 29,33, 37,67, 38,77, 39,38, 39,99, 43,16, 46,94, 48,75, 53,49, 53,84, 56,00, 56,36, 58,54, 61,97, 62,89, 124,44, 125,00, 211,72.

Фракция 3: 0,24 г (7,1 %) исходной смеси 3-бромэпоксидов 10 и 11.

Раскрытие эпоксида 12 бромистоводородной кислотой. К раствору 1,2 г (2.81 ммоль) эпоксида 12 в 14 мл хлороформа и 34 мл уксусной кислоты прибавляли 14 мл (83 ммоль) 48%-ного раствора бромистоводородной кислоты. Смесь перемешивали при комнатной температуре в течение 1,5 ч. Затем разбавляли водой, экстрагировали хлороформом. Экстракт пропускали через слой окиси алюминия, упаривали. Остаток хроматографировали на колонке с силикагелем, элюируя смесью петролейный эфир–этилацетат (10 : 1). Выделяли в порядке элюирования:

Фракция 1: 0,90 г (63 %) **(22S,23R,24S)-22-бром-23-гидрокси-24-этил-5а-холест-2-ен-6-она 14.** Т. пл. 183–185 °С (ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,68 с (3H, 18-CH₃), 0,71 с (3H, 19-CH₃), 0,92 д (3H, 21-CH₃, *J* 6,7 Гц), 4,07 д (1H, C²²-H, *J* 10,3 Гц), 4,22 д (1H, C²³-H, *J* 10,3 Гц), 5,56 м (1H, C²-H), 5,68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,90, 13,51, 15,49, 18,58, 19,18, 21,18, 21,20, 21,73, 24,06, 27,67, 28,95, 30,85, 37,74, 39,40, 39,43, 39,98, 42,69, 43,52, 46,94, 47,68, 53,45, 53,88, 55,02, 56,21, 63,20, 73,38, 124,47, 124,99, 211,70.

Фракция 2: 0,51 г (35 %) **(22***R***,23***S***,24***S***)-23-бром-22-гидрокси-24-этил-5а-холест-2-ен-6-она 15.** Т. пл. 189–192 °С (ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,72 с (3H, 18-CH₃), 0,73 с (3H, 19-CH₃), 0,91 д (3H, 21-CH₃, *J* 6,8 Гц), 0,93 т (3H, 29-CH₃, *J* 7,4 Гц), 4,02 д (1H, C²²-H, *J* 10,5 Гц), 4,16 дд (1H, C²³-H, *J* 10,3, 2,4 Гц), 5,56 м (1H, C²-H), 5,68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,18, 11,96, 12,52, 13,51, 18,63, 19,14, 21,17, 21,74, 23,83, 23,95, 27,37, 28,20, 37,72, 37,77, 39,41, 39,61, 40,02, 42,90, 46,01, 46,95, 52,91, 53,45, 53,89, 56,82, 60,46, 73,44, 124,48, 125,02, 211,70.

(23*S***,24***S***)-23-Гидрокси-24-этил-5α-холест-2-ен-6-он 16.** К раствору 0,26 г (0,51 ммоль) бромгидрина 14 в 4 мл сухого бензола добавляли 0,3 мл (1,1 ммоль) трибутилоловогидрида и 8 мг (0,05 ммоль) азобисизобутиронитрила. Смесь нагревали на масляной бане с обратным холодильником в течение 6 ч при температуре 100 °C в атмосфере аргона. Растворитель упаривали, остаток очищали хроматографией на силикагеле (элюент – петролейный эфир–этилацетат, 30 : 1). Получали 165 мг (75 %) 23-гидрокси-Δ²-стероида 16. Т. пл. 176–179 °C (ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,67 с (3H, 18-CH₃), 0,71 с (3H, 19-CH₃), 0,95 т (3H, 29-CH₃, *J* 7,4 Гц), 2,73 дд (1H, C²³-H, *J* 7,2, 2,3 Гц), 5,56 м (1H, C²-H), 5,68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,92, 12,41, 13,48, 13,55, 16,04, 17,29, 19,62, 20,14, 20,93, 21,09, 21,72, 24,19, 27,75, 28,26, 29,16, 37,69, 39,32, 39,37, 40,01, 43,12, 46,96, 48,30, 53,42, 53,87, 56,39, 61,99, 124,48, 124,96, 211,75.

(22*S*,24*R*)-22-Гидрокси-24-этил-5α-холест-2-ен-6-он 17. К 0,33 г (0,65 ммоль) бромгидрина 15 в 8 мл сухого бензола добавляли 0,4 мл (1,5 ммоль) трибутилоловогидрида и 10 мг (0,06 ммоль) азобисизобутиронитрила. Смесь нагревали на масляной бане с обратным холодильником в течение 16 ч при температуре 100 °C в атмосфере аргона. Растворитель упаривали, остаток хроматографировали на силикагеле (элюент – петролейный эфир–этилацетат, 30 : 1). Выделяли в порядке элюирования:

Фракция 1: 15 мг (5,4 %) (22R,23R,24S)-эпокси-24-этил-5а-холест-2-ен-6-она 12.

Фракция 2: 235 мг смеси 22*R*,23*R*-эпоксида **12** и Δ^2 -22-гидроксистероида **17**.

Полученную смесь растворяли в 3 мл хлороформа и 6 мл уксусной кислоты и добавляли 3 мл 48%-ной бромистоводородной кислоты. Реакционную смесь перемешивали при комнатной температуре в течение 1,5 ч. Затем разбавляли водой, экстрагировали хлороформом. Экстракт пропускали через слой окиси алюминия, упаривали. Остаток хроматографировали на колонке с силикагелем, элюируя смесью петролейный эфир–этилацетат (20 : 1). Выделяли в порядке элю-ирования:

Фракция 1: 150 мг (53 %) (22*S*,24*R*)-22-гидрокси-24-этил-5α-холест-2-ен-6-она 17. Т. пл. 181–184 °С (ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,70 с (3H, 18-CH₃), 0,71 с (3H, 19-CH₃), 2,52 м (1H, C²²-H), 5,56 м (1H, C²-H), 5,68 м (1H, C³-H). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,78, 12,11, 13,49, 14,11, 16,53, 18,36, 19,66, 21,05, 21,69, 22,68, 23,88, 24,18, 27,46, 29,35, 29,65, 31,91, 37,63, 39,31, 40,02, 43,46, 46,92, 49,45, 53,31, 53,80, 56,05, 61,95, 124,46, 124,94, 211,87.

Фракция 2: 65 мг (19 %) (22*S*,23*R*,24*S*)-22-бром-23-гидрокси-24-этил-5α-холест-2-ен-6-она **14**. *Фракция 3*: 36 мг (11 %) (22*R*,23*S*,24*S*)-23-бром-22-гидрокси-24-этил-5α-холест-2-ен-6-она **15**.

(23*S*,24*S*)-2*a*,3*a*,23-Тригидрокси-24-этил-5*a*-холестан-6-он 18. К раствору 130 мг (0,3 ммоль) стероида 16 в 17 мл смеси ацетон–вода (20 : 1) добавляли 100 мг (0,85 ммоль) *N*-метилморфолин-*N*-оксида и 10 мг (0,04 ммоль) OsO₄. Реакционную смесь оставляли при комнатной температуре при интенсивном перемешивании на 24 ч. Затем добавляли 50 мл воды, выпавший осадок отфильтровали на фильтре Шотта. Остаток хроматографировали на колонке с силикагелем, элю-ируя смесью хлороформ – метанол в соотношении 15 : 1. Получали 125 мг (89 %) 22-дегидрокси-28-гомокастастерона 18. Т. пл. 203–205 °C (ацетон). Спектр ¹Н ЯМР δ, м.д. (CDCl₃): 0,65 с (3H, 18-CH₃), 0,74 с (3H, 19-CH₃), 2,67 дд (1H, C⁵-H_α, *J* 12,6, 3,0 Гц), 2,73 дд (1H, C²³-H, *J* 7,2, 2,3 Гц), 3,75 м (1H, C²-H_β), 4,03 м (1H, C³-H_β). Спектр ¹³С ЯМР δ, м.д. (CDCl₃): 11,97, 12,41, 13,52, 16,05, 19,56, 20,13, 20,87, 21,13, 24,16, 26,27, 27,72, 29,11, 37,63, 38,51, 39,18, 40,15, 42,53, 43,21, 46,69, 48,25, 50,71, 53,32, 53,67, 56,26, 61,99, 62,05, 68,23, 68,34, 212,05.

(22*S*,24*R*)-2*a*,3*a*,22-Тригидрокси-24-этил-5*a*-холестан-6-он 19. 23-дегидрокси-28-гомокастастерон/ (98 мг) получен из стероида 17 с выходом 83 % согласно методике, приведенной для синтеза триола 18. Т. пл. 209–212 °С (ацетон). Спектр ¹Н ЯМР δ , м.д. (CDCl₃): 0,67 с (3H, 18-CH₃), 0,74 с (3H, 19-CH₃), 2,50 м (1H, C²²-H), 2,68 дд (1H, C⁵-H_a, *J* 12,6, 2,9 Гц), 3,74 м (1H, C²-H_β), 4,03 м (1H, C³-H_β). Спектр ¹³С ЯМР δ , м.д. (CDCl₃): 11,97, 12,41, 13,52, 16,05, 19,56, 20,13, 20,87, 21,13, 24,16, 26,27, 27,72, 29,11, 37,63, 38,51, 39,18, 40,15, 42,53, 43,21, 46,69, 48,25, 50,71, 53,32, 53,67, 56,26, 61,99, 62,05, 68,23, 68,34, 212,05.

Результаты и их обсуждение. В качестве исходного соединения использован бромкетон 9, полученный в 4 стадии из коммерческого стигмастерина 8 [15]. Окисление стероида 9 *м*-хлорнадбензойной кислотой давало смесь эпоксидов 10 и 11, хроматографическое деление которой на силикагеле не позволило выделить необходимое для дальнейших трансформаций количество 22R,23R-эпоксипроизводного. Поэтому было решено провести разделение изомеров на следующей стадии. Дегидробромирование смеси 3-бромэпоксидов 10 и 11 кипячением ее в диметилформамиде с карбонатом лития дало смесь изомерных эпоксидов, которую удалось разделить путем колоночной хроматографии на силикагеле. В результате были получены Δ^2 -эпоксиды 12 и 13 в соотношении 2,5 : 1 с суммарным выходом 74 % (рис. 2).

Конфигурация полученных Δ^2 -эпоксидов была установлена спектральными методами. В спектрах ¹Н ЯМР обоих соединений отсутствуют сигналы 3 α -протонов и имеются характерные мультиплеты с δ 5,55–5,56 и 5,68, свидетельствующие о наличии Δ^2 -связи. В спектре эпоксида **12** имеются два сигнала с δ 2,49 и 2,73, отвечающие резонансному поглощению протонов эпоксидного цикла. Значения химических сдвигов и констант спин-спинового взаимодействия этих протонов совпадают с данными, опубликованными для 22*R*,23*R*-эпоксидов [16, 17]. В спектре эпоксида **13** сигналы протонов эпоксидного цикла представлены в виде двухпротонного мультиплета с δ 2,50 м.д., что согласуется с литературными данными для 22*S*,23*S*-эпоксидов [16, 17]. Фрагменты спектров эпоксидов **12** и **13** приведены на рис. 3.

Рис. 3. Фрагменты спектров ¹Н ЯМР 22*R*,23*R*-эпоксида **12** (сверху) и 22*S*,23*S*-эпоксида **13** (снизу) Fig. 3. Fragments of ¹H NMR spectra of 22*R*,23*R*-epoxide **12** (top) and 22*S*,23*S*-epoxide **13** (bottom)

Обработка 22*R*,23*R*-эпоксида 12 бромистоводородной кислотой в смеси уксусная кислота– хлороформ дала бромгидрины 14 и 15 в соотношении 9 : 5 с выходом, близким к количественному (рис. 4).

В спектрах ¹Н ЯМР соединений **14** и **15** отсутствуют сигналы эпоксидных протонов и имеются характерные мультиплеты с δ 5,56 и 5,68, свидетельствующие о сохранении Δ^2 -связи. Также в спектрах присутствует ряд новых сигналов в диапазоне 4,02–4,22 м.д., принадлежащих про-

Рис. 4. Реакция эпоксида **12** с бромистоводородной кислотой Fig. 4. Reaction of epoxide **12** with hydrobromic acid

тонам при C-22 и C-23. Положение заместителей в боковой цепи полученных стероидов было установлено путем сравнения их спектральных характеристик с литературными данными схожих соединений. Так, в спектре соединения 14 присутствуют два дублета с δ 4,07 и 4,22, что согласуется с данными, полученными для 22-бром-23-гидроксистероидов [18]. В ¹Н ЯМР спектре бромгидрина 15 присутствует дублет с δ 4,02 и дублет дублета с δ 4,16, что характерно для 23-бром-22-гидроксистероидов [18]. Фрагменты спектров полученных изомеров приведены на рис. 5. Конфигурация гидроксильной группы соединений 14 и 15 определяется исходным эпоксидом (*R*), а конфигурация атома брома – особенностями транс-раскрытия эпоксидного цикла (*S*).

Полученные бромгидрины 14 и 15 подвергли реакциям радикального дебромирования. Синтезы проводили в кипящем сухом бензоле в присутствии трибутилоловогидрида и каталитических количеств азобисизобутиронитрила. Дебромирование 22-бром-23-гидроксистероида 14 протекало за 6 ч и приводило к единственному продукту Δ^2 -23-гидроксистероиду 16 (рис. 6). В ¹Н ЯМР спектре полученного соединения отсутствуют сигналы С-22 и С-23 протонов исходного бромгидрина в диапазоне 4,07–4,22 м.д., и появляется новый сигнал в виде дублета дублета с δ 2,73, принадлежащий атому водорода, связанному с атомом углерода С-23, несущим гидроксильную

Рис. 5. Фрагменты спектров ¹Н ЯМР бромгидринов **14** (сверху) и **15** (снизу) Fig. 5. Fragments of the ¹H NMR spectra of bromohydrins **14** (top) and **15** (bottom)

Puc. 6. Дебромирование бромгидрина 14 Fig. 6. Debromination of bromohydrin 14

группу. Также в молекуле сохраняются мультиплеты с δ 5,56 и 5,68, свидетельствующие о неизменности Δ^2 -связи.

Аналогичная реакция 23-бром-22-гидроксистероида 15 требовала кипячения реакционной смеси в течение 16 ч. При этом в результате получена смесь двух веществ: Δ^2 -22-гидроксипроизводного 17 и 22*R*,23*R*-эпоксида 12 (рис. 7). Образование 12 является результатом побочной реакции дегидробромирования 15 в условиях проведения процесса дебромирования. Хроматографическое деление реакционной смеси на силикагеле не позволило выделить достаточное количество продуктов в чистом виде. Поэтому было решено обработать смесь бромистоводородной кислотой, что привело к образованию бромгидринов 14 и 15, полярность которых заметно отличается от полярности исходного эпоксида 12 и стероида 17. Полученная смесь из трех веществ была успешно разделена методом колоночной хроматографии на силикагеле.

В ¹Н ЯМР спектре полученного 22-гидроксистероида 17 неизменными остаются мультиплеты, соответствующие Δ²-связи, и присутствует новый мультиплет с δ 2,52, свидетельствующий о наличии гидроксильной группы при атоме углерода С-22.

Реакции введения 2α , 3α -диольной группировки в соединения **16** и **17** проводили в водном ацетоне в присутствии *N*-метилморфолин-*N*-оксида, используя каталитические количества четырехокиси осмия (рис. 8).

Puc. 7. Дебромирование бромгидрина **15** Fig. 7. Debromination of bromohydrin **15**

Рис. 8. Синтез триолов **18** и **19** Fig. 8. Synthesis of triols **18** and **19**

Структура полученных соединений подтверждается данными ¹Н ЯМР. В спектрах стероидов **18** и **19** отсутствуют сигналы мультиплетов, характерные для Δ²-связи и присутствует ряд новых сигналов δ 3,74–3,75 и 4,03, свидетельствующих о наличии 2α,3α-диольной группировки.

Таким образом, в результате проведенного исследования разработан метод синтеза предполагаемых биосинтетических предшественников гомокастастерона, содержащих одну гидроксильную группу в боковой цепи. При этом целевые соединения получены с использованием простых реакций с сохранением нативного углеродного скелета боковой цепи исходного стерина.

Благодарности. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект X23PHФ-087). Acknowledgements. The work was financially supported by the Belarusian Republican Foundation for Fundamental Research (grant agreement no. X23RNF-087).

Список использованных источников

1. Khripach, V. A. Brassinosteroids. A New Class of Plant Hormones / V. A. Khripach, V. N. Zhabinskii, A. E. de Groot. – San Diego: Academic Press, 1999. – 456 c.

2. Bajguz, A. Brassinosteroids – Occurence and Chemical Structures in Plants / A. Bajguz // Brassinosteroids: A Class of Plant Hormone / eds.: S. Hayat, Aqil Ahmad. – Dordrecht, 2011. – P. 1–27. https://doi.org/10.1007/978-94-007-0189-2 1

3. Wei, Z. Regulation of brassinosteroid homeostasis in higher plants / Z. Wei, J. Li // Front. Plant Sci. – 2020. – Vol. 11. – № 583622. https://doi.org/10.3389/fpls.2020.583622

4. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis / S. W. Choe [et al.] // Plant Cell. – 1998. – Vol. 10, № 2. – P. 231–243. https://doi.org/10.1105/tpc.10.2.231

5. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols / S. Fujita [et al.] // Plant J. – 2006. – Vol. 45, № 5. – P. 765–774. https://doi.org/10.1111/j.1365-313X.2005.02639.x

6. CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato / T. Ohnishi [et al.] // Biosci. Biotechnol. Biochem. – 2006. – Vol. 70, № 9. – P. 2071–2080. https://doi.org/10.1271/bbb.60034

7. Khripach, V. A. Synthetic Aspects of Brassinosteroids / V. A. Khripach, V. N. Zhabinskii, Y. V. Ermolovich // Studies in Natural Products Chemistry / ed. Atta-ur-Rahman. – Amsterdam, 2015. – P. 309–352. https://doi.org/10.1016/B978-0-444-63460-3.00006-7

8. Synthesis of hexadeuterated 23-dehydroxybrassinosteroids / V. A. Khripach [et al.] // Steroids. – 2002. – Vol. 67, № 13–14. – P. 1101–1108. https://doi.org/10.1016/S0039-128X(02)00071-5

9. Synthesis of $[26,27^{-2}H_6]$ brassinosteroids from 23,24-bisnorcholenic acid methyl ester / A. P. Antonchick [et al.] // Steroids. - 2004. - Vol. 69, No 10. - P. 617-628. https://doi.org/10.1016/j.steroids.2004.05.014

10. Hurski, A. L. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors / A. L. Hurski, V. N. Zhabinskii, V. A. Khripach // Steroids. – 2012. – Vol. 77, № 7. – P. 780–790. https://doi.org/10.1016/j.steroids.2012.03.010

11. A convenient synthesis of (22S)-22-hydroxycampesterol and some related steroids / S. Takatsuto [et al.] // J. Chem. Res. (S). – 1998. – № 4. – P. 176–177. https://doi.org/10.1039/A707201E

12. A concise and stereoselective synthesis of the cathasterone's side chain / T. S. Mei [et al.] // Chin. Chem. Lett. – 2004. – Vol. 15. – P. 762–764.

13. Synthesis of cathasterone and its related putative intermediates in brassinolide biosynthesis / S. Takatsuto [et al.] // J. Chem. Res. (S). $-1997. - N_{\odot} 11. - P. 418-419.$ https://doi.org/10.1039/A704788F

14. Synthesis of 24-epicathasterone and related brassinosteroids with modified side chain / B. Voigt [et al.] // Tetrahedron. – 1997. – Vol. 53, № 50. – P. 17039–17054. https://doi.org/10.1016/S0040-4020(97)10146-6

15. Новый синтез (22*S*,23*S*)-28-гомокастастерона / А. А. Ахрем [и др.] // Докл. Акад. наук СССР. – 1984. – Т. 275, № 5. – С. 1089–1091.

16. Fuentes-Figueroa, M. A. Absolute configuration assignment of stigmasterol oxiranes / M. A. Fuentes-Figueroa, P. Joseph-Nathan, E. Burgueno-Tapia // Chirality. – 2022. – Vol. 34, № 2. – P. 396–420. https://doi.org/10.1002/chir.23390

17. Configurational assignment of epimeric 22,23-epoxides of steroids by C-13 NMR-spectroscopy / M. G. Sierra [et al.] // Tetrahedron. – 1986. – Vol. 42, № 2. – P. 755–758. https://doi.org/10.1016/S0040-4020(01)87482-2

18. Nakane, M. Stereoselectivity in the electrophilic addition reactions of stigmast-22(23)-ene derivatives / M. Nakane, M. Morisaki, N. Ikekawa // Tetrahedron. – 1975. – Vol. 31, № 22. – P. 2755–2760. https://doi.org/10.1016/0040-4020(75)80285-7

References

1. Khripach V. A., Zhabinskii V. N., Groot A. E. de. *Brassinosteroids. A New Class of Plant Hormones.* San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/B978-0-12-406360-0.X5000-X

2. Bajguz A., Hayat S., Ahmad A. Brassinosteroids – Occurence and Chemical Structures in Plants. *Brassinosteroids:* A Class of Plant Hormone. Dordrecht, Springer, 2011, pp. 1–27. https://doi.org/10.1007/978-94-007-0189-2_1

3. Wei Z., Li J. Regulation of brassinosteroid homeostasis in higher plants. *Frontiers in Plant Science*, 2020, vol. 11, pp. 583622. https://doi.org/10.3389/fpls.2020.583622

4. Choe S. W., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. *Plant Cell*, 1998, vol. 10, no. 2, pp. 231–243. https://doi.org/10.1105/tpc.10.2.231

5. Fujita S., Ohnishi T., Watanabe B., Yokota T., Takatsuto S., Fujioka S., Yoshida S., Sakata K., Masaharu M. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. *Plant Journal*, 2006, vol. 45, no. 5, pp. 765–774. https://doi.org/10.1111/j.1365-313X.2005.02639.x

6. Ohnishi T., Watanabe B., Sakata K., Mizutani M. CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. *Bioscience, Biotechnology, and Biochemistry*, 2006, vol. 70, no. 9, pp. 2071–2080. https://doi.org/10.1271/bbb.60034

7. Khripach V. A., Zhabinskii V. N., Ermolovich Y. V. Synthetic Aspects of Brassinosteroids. Atta-ur-Rahman (ed.). *Studies in Natural Products Chemistry*. Amsterdam, Elsevier, 2015, pp. 309–352. https://doi.org/10.1016/B978-0-444-63460-3.00006-7

8. Khripach V. A., Zhabinskii V. N., Antonchick A. P., Konstantinova O. V., Schneider B. Synthesis of hexadeuterated 23-dehydroxybrassinosteroids. *Steroids*, 2002, vol. 67, no. 13–14, pp. 1101–1108. https://doi.org/10.1016/S0039-128X(02)00071-5

9. Antonchick A. P., Schneider B., Zhabinskii V. N., Khripach V. A. Synthesis of [26,27-²H₆]brassinosteroids from 23,24-bisnorcholenic acid methyl ester. *Steroids*, 2004, vol. 69, no. 10, pp. 617–628. https://doi.org/10.1016/j.steroids.2004.05.014

10. Hurski A. L., Zhabinskii V. N., Khripach V. A. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors. *Steroids*, 2012, vol. 77, no. 7, pp. 780–790. https://doi.org/10.1016/j.steroids.2012.03.010

11. Takatsuto S., Watanabe T., Gotoh C., Kuriyama H., Noguchi T., Fujioka S. A convenient synthesis of (22S)-22-hydroxycampesterol and some related steroids. *Journal of Chemical Research*, 1998, no. 4, pp. 176–177. https://doi.org/10.1039/ A707201E

12. Mei T. S., Peng L. Z., Zhang T., Li Y. L. A concise and stereoselective synthesis of the cathasterone's side chain. *Chinese Chemical Letters*, 2004, vol. 15, pp. 762–764.

13. Takatsuto S., Kuriyama H., Noguchi T., Suganuma H., Fujioka S., Sakurai A. Synthesis of cathasterone and its related putative intermediates in brassinolide biosynthesis. *Journal of Chemical Research*, 1997, no. 11, pp. 418–419. https://doi. org/10.1039/A704788F

14. Voigt B., Porzel A., Bruhn C., Wagner C., Merzweiler K., Adam G. Synthesis of 24-epicathasterone and related brassinosteroids with modified side chain. *Tetrahedron*, 1997, vol. 53, no. 50, pp. 17039–17054. https://doi.org/10.1016/S0040-4020(97)10146-6

15. Akhrem A. A., Lakhvich F. A., Khripach V. A., Kovganko N. V., Zhabinsky V. N. New synthesis of (22S,23S)-28-homocastasterone. *Dokl. Akad. Nauk SSSR* [Doklady (Transactions) of the USSR Academy of Sciences], 1984, vol. 275, no. 5, pp. 1089–1091 (in Russian).

16. Fuentes-Figueroa M. A., Joseph-Nathan P., Burgueno-Tapia E. Absolute configuration assignment of stigmasterol oxiranes. *Chirality*, 2022, vol. 34, no. 2, pp. 396–420. https://doi.org/10.1002/chir.23390

17. Sierra M. G., Bustos D. A., Zudenigo M. E., Ruveda E. A. Configurational assignment of epimeric 22,23-epoxides of steroids by C-13 NMR-spectroscopy. *Tetrahedron*, 1986, vol. 42, no. 2, pp. 755–758. https://doi.org/10.1016/S0040-4020(01)87482-2

18. Nakane M., Morisaki M., Ikekawa N. Stereoselectivity in the electrophilic addition reactions of stigmast-22(23)-ene derivatives. *Tetrahedron*, 1975, vol. 31, no. 22, pp. 2755–2760. https://doi.org/10.1016/0040-4020(75)80285-7

Информация об авторах

Хрипач Владимир Александрович – академик, д-р хим. наук, профессор, зав. лаб. Институт биоорганической химии НАН Беларуси (ул. В. Ф. Купревича, 5/2, 220084, Минск, Республика Беларусь). E-mail: khripach@ iboch.by

Жабинский Владимир Николаевич – член-корреспондент, д-р хим. наук, профессор, гл. науч. сотрудник. Институт биоорганической химии НАН Беларуси (ул. В. Ф. Купревича, 5/2, 220084, Минск, Республика Беларусь). E-mail: vz@iboch.by

Сикоров Евгений Владимирович – лаборант. Институт биоорганической химии НАН Беларуси (ул. В. Ф. Купревича, 5/2, 220084, Минск, Республика Беларусь). E-mail: vz@iboch.by

Лазарев Станислав Игоревич – мл. науч. сотрудник. Институт биоорганической химии НАН Беларуси (ул. В. Ф. Купревича, 5/2, 220084, Минск, Республика Беларусь). E-mail: stanislav-l@iboch.by

Information about the authors

Khripach Vladimir A. – Academician, D. Sc. (Chemistry), Professor, Head of Laboratory. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220084, Minsk, Republic of Belarus). E-mail: khripach@iboch.by

Zhabinskii Vladimir N. – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Chief Researcher. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220084, Minsk, Republic of Belarus). E-mail: vz@iboch.by

Sikorov Evgeny V. – Laboratory Assistant. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220084, Minsk, Republic of Belarus). E-mail: vz@iboch.by

Lazarev Stanislav I. – Junior Researcher. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220084, Minsk, Republic of Belarus). E-mail: stanislav-l@iboch.by