ISSN 1561-8331 (Print) ISSN 2524-2342 (Online)

НЕАРГАНІЧНАЯ ХІМІЯ

INORGANIC CHEMISTRY

УДК 661.635 https://doi.org/10.29235/1561-8331-2024-60-2-121-128 Поступила в редакцию 22.06.2023 Received 22.06.2023

Л. С. Ещенко, О. В. Понятовский

Белорусский государственный технологический университет, Минск, Беларусь

ИССЛЕДОВАНИЕ СВОЙСТВ АЛЮМОФОСФАТНЫХ РАСТВОРОВ И КРИСТАЛЛИЗУЮЩИХСЯ ИЗ НИХ ПРОДУКТОВ

Аннотация. Исследованы физико-химические свойства свежеприготовленных алюмофосфатных растворов, полученных в системе Al(OH)₃ – H₃PO₄ – H₂O с мольным соотношением $n(Al_2O_3) : n(P_2O_5) = 1,0 : 2,75$. Изучены плотность, температурная зависимость динамической вязкости исследуемых растворов с концентрацией P₂O₅ 300–485 г/л. Рассчитаны значения кажущейся энергии активации вязкого течения (E_{η}) алюмофосфатных растворов и установлен интервал концентраций (390–420 г/л P₂O₅), в котором E_{η} почти постоянная и составляет 15,0 кДж/моль. Высказано предположение, что изменение энергии активации вязкого течения алюмофосфатных растворов обусловлено их структурой, определяемой составом фосфатных комплексов алюминия. Показано влияние вязкостных свойств алюмофосфатных растворов и их концентрации на процесс кристаллизации гидратированного алюмофосфата, в частности продолжительность индукционного периода, скорость фазообразования.

Ключевые слова: алюмофосфатный раствор, энергия активации вязкого течения, вязкостные свойства, фазообразование, алюмофосфатные комплексы, индукционный период

Для цитирования. Ещенко, Л. С. Иследования свойств алюмфосфатных растворов и кристализующихся из них продуктов / Л. С. Ещенко, О. В. Понятовский // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2024. – Т. 60, № 2. – С. 121–128. https://doi.org/10.29235/1561-8331-2024-60-2-121-128

L. S. Eshchenko, A. V. Paniatouski

Belarusian State Technological University, Minsk, Belarus

INVESTIGATION OF THE PROPERTIES OF ALUMOPHOSPHATE SOLUTIONS AND PRODUCTS CRYSTALLIZED FROM THEM

Abstract. The physicochemical properties of freshly prepared alumophosphate solutions obtained in the Al(OH)₃ – $H_3PO_4 - H_2O$ system with the molar ratio $n(Al_2O_3) : n(P_2O_5) = 1.0 : 2.75$ have been investigated. The density and temperature dependence of the dynamic viscosity of the studied solutions with a concentration of P_2O_5 300–485 g/l were studied. The values of the apparent activation energy of the viscous flow (E_η) of alumophosphate solutions are calculated and the concentration range (390–420 g/l P_2O_5) is established, in which E_η is practically constant and is 15.0 kJ/mol. It is suggested that the change in the activation energy of the viscous flow of alumophosphate solutions is due to their structure determined by the composition of aluminum phosphate complexes. The influence of the viscosity properties of alumophosphate solutions and their concentration on the crystallization process of hydrated alumophosphate, in particular, the duration of the induction period and the rate of phase formation, is shown.

Keywords: alumophosphate solution, activation energy of viscous flow, viscosity properties, phase formation, alumophosphate complexes, induction period

For citation. Eshchenko L. S., Paniatouski A. V. Investigation of the properties of alumophosphate solutions and products crystallized from them. *Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Science of Belarus. Chemical series*, 2024, vol. 60, no. 2, pp. 121–128 (in Russian). https://doi. org/10.29235/1561-8331-2024-60-2-121-128

Введение. В качестве дисперсной фазы для разработки составов и создания электрореологических суспензий (ЭРС) широко используются неорганические и полимерные материалы, частицы которых под действием электрического поля способны инициировать большое количество поверхностных зарядов и подвергаться поляризации [1]. Особый интерес представляют высоко-

[©] Ещенко Л. С., Понятовский О. В., 2024

дисперсные безводные композиции на основе оксидов и солей металлов, например химически и термически стабильный алюмофосфат состава AlPO₄, получаемый дегидратацией AlPO₄ · 2H₂O [2, 3]. Однако отмечено, что электрореологическая активность AlPO₄ не всегда воспроизводима. Одной из причин, как показано ранее [3], является влияние свойств и структуры AlPO₄ · 2H₂O на формирование при термообработке ЭР-активного безводного алюмофосфата.

Несмотря на ряд работ по получению моноклинного, орторомбического, рентгеноаморфного алюмофосфатов состава AlPO₄ · xH₂O [4-9], данные об их фазообразовании в зависимости от условий синтеза ограничены. Нами показано [10, 11], что, варьируя концентрацию алюмофосфатного раствора, полученного растворением Al(OH), в H₃PO₄, продолжительность и температуру его старения, можно в результате гидротермальной кристаллизации получить либо суспензию мелкодисперсного AlPO₄ · 2H₂O, либо пастообразную массу, образующуюся во всем объеме алюмофосфатного раствора. В связи с этим высказано предположение, что особенностью формирования твердой фазы в системе Al₂O₃ - P₂O₅ - H₂O является структура и строение насыщенных водных алюмофосфатных растворов, в которых в зависимости от концентрации присутствуют различные по составу метастабильные фосфатные комплексы алюминия. Концентрация и ионный состав растворов, как известно [12], взаимосвязаны с их вязкостью [12], которая может оказывать влияние на кинетику фазообразования и свойства кристаллизующихся продуктов. Так, при исследовании динамической вязкости и определении энергии активации вязкого течения (E_n) пересыщенных растворов фторида алюминия установлены структурные изменения в зависимости от их концентрации и сделан вывод, что E_n может служить косвенной характеристикой прочности структуры насыщенных и пересыщенных растворов [13]. Отмечено, что пересыщенные растворы фторида алюминия являются сильными электролитами, в которых комплексные ионы $Al(H_2O)_5F^{2+}$ и $Al(H_2O)F_5^{2-}$ значительно гидратированы и обладают большой стабильностью, что определяет скорость зародышеобразования при кристаллизации фторида алюминия [13]. Образование различных по составу комплексов характерно и для ионов алюминия в алюмофосфатных растворах. В литературе имеется ряд данных о структурных особенностях водных растворов фосфорной кислоты и алюмофосфатных растворов, получаемых растворением гидроксида алюминия в фосфорной кислоте. В то же время сведения о влиянии концентрации приготовленных таким образом алюмофосфатных растворов, а следовательно, их состава и свойств на фазообразование, как это было отмечено для AlF₃, практически отсутствуют. Исходя из этого в данной работе изучены вязкостные свойства свежеприготовленных алюмофосфатных растворов с содержанием Р₂O₅ 300-485 г/л и показано их влияние на скорость кристаллизации гидратированного алюмофосфата.

Методология работы. В качестве исходных реагентов для приготовления алюмофосфатных растворов использовали гидроксид алюминия $Al(OH)_3$ реактивной квалификации (марки «ч. д. а.») с содержанием основного вещества не менее 98,0 мас.% (ГОСТ 11841-76), раствор ортофосфорной кислоты реактивной квалификации (марки «ч. д. а.») с содержанием H_3PO_4 85 мас.% (ГОСТ 6552-80). Алюмофосфатные растворы получали растворением гидроксида алюминия в растворе ортофосфорной кислоты, как описано ранее [10, 11]. В данном случае использовали растворы с массовой долей H_3PO_4 34,2–50,1 %. Кристаллизацию алюмофосфата, его отмывку осуществляли согласно имеющимся методикам [10, 11]. Определение содержания Al_2O_3 , P_2O_5 , H_2O в продуктах кристаллизации также проводили по известным методикам. Фазовый состав устанавливали с помощью рентгеновского дифрактометра D8 ADVANCE фирмы BRUKER AXS (Германия). Размер частиц и распределение их по размерам исследовали на лазерном микроанализаторе FRITSCH ANALYSETTE 22 (Германия).

Динамическую вязкость η [мПа · с] приготовленных растворов определяли ротационным вискозиметром Brookfield RVDV-II+Pro (США). Цикл измерений проводили в сторону повышения температуры алюмофосфатных растворов от 20 до 75 °C с интервалом 5 °C. Растворы для исследований использовали свежеприготовленные. Для измерения плотности р [г/см³] алюмофосфатных растворов использовали набор денсиметров (ГОСТ 1300-57). Энергию активации вязкого течения рассчитывали по уравнению Френкеля–Эйринга [14]:

$$\eta = A \times \exp\left(\frac{E_{\eta}}{RT}\right),\tag{1}$$

где η – динамическая вязкость, Па · с; A – постоянная (предэкспоненциальный множитель), имеющая размерность вязкости, Па · с; E_{η} – свободная энергия активации вязкого течения, Дж/моль; R – универсальная газовая постоянная; R = 8,314 Дж/(моль·К); T – абсолютная температура, К; e – основание натуральных логарифмов.

Прологарифмировав уравнение (1), получили следующее математическое выражение:

Рис. 1. Графический способ определения кажущейся энергии активации вязкого течения

Fig. 1. Graphical method for determining the apparent activation energy of a viscous flow

$$\ln \eta = \ln A + \frac{E_{\eta}}{R} \times \frac{1}{T}.$$
(2)

С учетом обозначений: $y = \ln \eta$; $a = \ln A$; $b = E_{\eta}/R$; x = 1/T, линеаризованное уравнение регрессии имеет следующий вид: y = a + bx.

Кажущуюся энергию активации вязкого течения для исследуемых растворов определяли графическим методом по температурной зависимости эффективной динамической вязкости алюмофосфатных растворов в аррениусовских координатах (рис. 1). Построение зависимостей и оценку адекватности полученных математических моделей по коэффициентам детерминации (прогнозирования) R^2 осуществляли с использованием программы MS Excel. По углу наклона прямой (tg α) определяли энергию активации вязкого течения согласно выражению:

$$\operatorname{tg} \alpha = \frac{d(\ln \eta)}{d(T^{-1})} = \frac{\Delta E_{\eta}}{R},\tag{3}$$

где tg α – тангенс угла наклона прямой температурной зависимости эффективной динамической вязкости в аррениусовских координатах; ΔE_{η} – энергия активации вязкого течения, Дж/моль; *R* – универсальная газовая постоянная; *R* = 8,314 Дж/(моль·К).

Результаты и их обсуждение. В табл. 1 представлена концентрация исследуемых алюмофосфатных растворов, с увеличением которой заметно изменяются их свойства: существенно возрастают динамическая вязкость и плотность.

Таблица 1. Состав и характеристики исследуемых алюмофосфатных растворов Table 1. Composition and characteristics of the investigated alumophosphate solutions

№ исследуемого раствора	Мольное соотношение P ₂ O ₅ /Al ₂ O ₃	Массовая доля w(H ₃ PO ₄) в исходной ортофосфорной кислоте, %	Концентрация Р ₂ О ₅ /Аl ₂ О ₃ , г/л в алюмофосфатном растворе	Вязкость η при 20 °С, мПа · с	Плотность р при 20 °C, г/см ³
1	2,75 : 1	34,2	300,0/78,4	53,8	1,265
2		37,4	335,0/87,5	67,8	1,318
3		41,4	380,0/99,3	99,2	1,352
4		44,4	415,0/108,4	138,2	1,385
5		47,3	450,0/117,5	197,4	1,413
6		50,1	485,0/126,7	260,6	1,472

Температурная зависимость эффективной динамической вязкости исследуемых алюмофосфатных растворов показана в табл. 2 и на рис. 2.

Таблица 2. Экспериментальные данные измерения динамической вязкости алюмофосфатных растворов в интервале температур 20–75 °C

			Номер раствора (табл. 1)											
<i>Т</i> , °С <i>Т</i> , К	<i>Т</i> , К	1000/ <i>T</i> , К ⁻¹	1		2		3		4		5		6	
			η, мПа∙с	ln (η)	η, мПа∙с	ln (η)	η, мПа∙с	ln (η)	η, мПа∙с	ln (ŋ)	η, мПа∙с	ln (ŋ)	η, мПа∙с	ln (η)
20	293,15	3,411	53,8	3,985	67,8	4,217	99,2	4,597	138,2	4,929	197,4	5,285	260,6	5,563
25	298,15	3,354	48,8	3,888	62,0	4,127	89,4	4,493	122,2	4,806	174,6	5,162	227,6	5,428
30	303,15	3,299	44,6	3,798	57,0	4,043	81,2	4,397	109,8	4,699	156,2	5,051	200,4	5,300
35	308,15	3,245	41,4	3,723	52,6	3,963	74,2	4,307	99,2	4,597	138,2	4,929	177,2	5,177
40	313,15	3,193	38,0	3,638	48,6	3,884	67,0	4,205	89,8	4,498	123,8	4,819	158,6	5,066
45	318,15	3,143	35,2	3,561	45,2	3,811	61,4	4,117	81,6	4,402	112,6	4,724	142,4	4,959
50	323,15	3,095	32,8	3,490	41,8	3,733	55,8	4,022	75,4	4,323	102,8	4,633	130,6	4,872
55	328,15	3,047	30,8	3,428	39,6	3,679	51,2	3,936	69,6	4,243	92,8	4,530	117,2	4,764
60	333,15	3,002	28,8	3,360	36,8	3,605	47,2	3,854	64,2	4,162	84,2	4,433	106,8	4,671
65	338,15	2,957	27,0	3,296	34,6	3,544	44,0	3,784	59,6	4,088	77,6	4,352	96,8	4,573
70	343,15	2,914	25,4	3,235	32,8	3,490	41,2	3,718	55,0	4,007	72,0	4,277	88,6	4,484
75	348,15	2,872	24,0	3,178	31,0	3,434	38,8	3,658	51,0	3,932	67,2	4,208	81,2	4,397

Table 2. Experimental data for measuring the dynamic viscosity of alumophosphate solutions in the temperature range of 20–75 °C

Анализ полученных экспериментальных данных, показанных на рис. 2, указывает на то, что характер кривых для всех исследуемых растворов одинаков. Зависимость $\ln(\eta) = f(T^{-1})$ для алюмофосфатных растворов в области изученных температур и концентраций линейна. Коэффициенты детерминации R² для представленных линейных зависимостей близки по величине к 1,0 ($R^2 \ge 0,9990$) (табл. 3), что свидетельствует о корректности используемой методики и позволяет определить значения кажущейся энергии активации вязкого течения. Прямолинейный вид зависимостей $\ln(\eta) = f(T^{-1})$ дает основание предположить о наличии в растворах комплексных соединений со связями одного типа, что отмечено и для других объектов исследования [15]. Исходя из данных о характере взаимодействия H₃PO₄ и акваиона алюминия [12, 16], в алюмофосфатных растворах присутствуют комплексные ионы с прочными водородными связями между молекулами воды и фосфатными анионами.

Результаты расчета значений кажущейся энергии активации вязкого течения для исследуемых растворов согласно уравнению (3) представлены в табл. 3.

Рис. 2. Температурная зависимость эффективной динамической вязкости алюмофосфатных растворов (номера зависимостей *1–6* соответствуют номерам растворов в таблице)

Fig. 2. Temperature dependence of the effective dynamic viscosity of alumophosphate solutions (The dependency numbers l-6 correspond to the solution numbers in Table 1)

Nº	С (Р ₂ О ₅), г/л	Уравнение регрессии	Коэффициент прогнозирования R ²	$b = E_{\eta}/R$	E_{η} , кДж/моль
1	300	y = 1488, 6x - 1, 1076	0,9992	1 488,6	12,38
2	335	y = 1454, 6x - 0,7555	0,9992	1 454,6	12,09
3	380	y = 1772, 1x - 1,4521	0,9991	1 772,1	14,73
4	415	y = 1822,5x - 1,3101	0,9990	1 822,5	15,15
5	450	y = 2016, 6x - 1, 6071	0,9990	2 016,6	16,77
6	485	y = 2143, 1x - 1,7654	0,9994	2 143,1	17,82

Таблица 3. Результаты расчета E_{η} для алюмофосфатных растворов Table 3. Results of calculation of E_{η} for alumophosphate solutions

Согласно [14] значение E_{η} для реальных растворов и расплавов представляет собой, по существу, температурный коэффициент вязкости полимерной системы, выраженный в тепловых единицах, и строгого физического смысла не имеет. Это предопределяет возможность описания E_{η} как кажущейся величины энергии активации процесса течения [14]. Зависимость величины кажущейся энергии активации вязкого течения от концентрации P₂O₅ в алюмофосфатных растворах представляен на рис. 3.

Вид зависимости кажущейся энергии активации вязкого течения алюмофосфатных растворов от концентрации свидетельствует об их различной структуре в связи с тем, что образующиеся при взаимодействии Al(OH), и H₃PO₄ акваалюмофосфатные комплексные ионы отличаются как степенью гидратации, так и устойчивостью. Кривая зависимости $E_{\eta} = f(C)$ для алюмофосфатных растворов в изученной области концентраций имеет несколько характерных участков. Можно предположить, что некоторое снижение E_n в водных растворах фосфата алюминия с концентрацией 330-340 г/л Р₂О₅ связано с преобладанием эффекта структурирования (упорядочивания структуры) воды. Аналогичное снижение E_n отмечено и в растворах AlF₃ [13]. В интервале концентраций от ~ 340 до ~ 380 г/л $\rm P_2O_5$ наблюдается рост $E_{\rm \eta}$ от 12,1 до 14,8 кДж/моль. В этом интервале концентраций растворов исходя из известных данных преобладают мономерные формы алюмофосфатных комплексов с лигандами [HPO₄]²⁻, [H₂PO₄]⁻, распределение которых неравновесное и изменяется по мере повышения концентрации. В интервале концентраций \sim 390–420 г/л Р₂O₅ $E_{\rm p}$ составляет \approx 15,0 кДж/моль. Постоянное значение энергии активации вязкого течения алюмофосфатных растворов в узком интервале концентраций (см. рис. 3) может свидетельствовать об устойчивости ионного состава растворов. Известно [4], что с повышением концентрации алюмофосфатных растворов в них образуются сложные комплексы с двумя и тре-

мя фосфатными группами на один атом алюминия, что может влиять на их устойчивость. Значительный рост E_{η} до 18,0 кДж/моль в концентрированных алюмофосфатных растворах (см. рис. 3) связан с преобладанием в них агрегированных комплексов [4, 12], которые могут конденсироваться в трехмерные связанные накрест полимеры, что сопровождается значительным увеличением вязкости растворов [4].

Исследовано влияние вязкостных свойств и концентрации свежеприготовленных алюмофосфатных растворов, полученных растворением Al(OH)₃ в фосфорной кислоте заданных концентраций, на процесс кристаллизации гидратированного алюмофосфата. Согласно общим представлениям о кристаллизации образование зародышей новой фазы возможно при определенной критической степени пересыщения, которая зависит как от природы вещества, так и наличия центров конденсации. Для растворов труднорастворимых веществ,

Fig. 3. The dependence of E_{η} on the concentration of alumophosphate solutions

каким является гидратированный ортофосфат алюминия, степень пересыщения в зависимости от концентрации раствора может быть тысячекратной и от нее зависит продолжительность индукционного периода, в течение которого раствор находится в метастабильном состоянии без видимых изменений.

Влияние концентрации свежеприготовленных алюмофосфатных растворов на продолжительность индукционного периода и ход кристаллизации представлено в табл. 4.

Таблица 4. Влияние концентрации алюмофосфатных растворов на процесс кристаллизации алюмофосфата

Table 4.	Influence of the	he concentration (of alumopl	hosphate so	lutions on t	he crystall	ization of	alumoph	osphate
----------	------------------	--------------------	------------	-------------	--------------	-------------	------------	---------	---------

	Результаты исследования								
Концентрация		состава продуктов							
свежеприготовленных алюмофосфатных растворов, г/л Р ₂ О ₅	Продолжительность индукционного	Внешний вид продукта после	Объем тв к жид	вердой фазы по кой фазе во вр	о отношению емени, %	Химический, фазовый состав,			
	периода, ч	кристаллизации	8ч	10-12 ч	40–44 ч	дисперсность			
340	3,5	рыхлый объемный	50	65	90	$A1PO_4 \cdot 2H_2O$ с моно-			
380	5,0		55	75	95	клинной структурой			
420	6,0	осадок	60	85	95	и преобладающим			
420*	3,0	пастообразная масса	90	100	100	5-10 мкм			

* Раствор подвергался старению в течение шести месяцев.

Из представленных данных вытекает, что различное структурное состояние свежеприготовленных алюмофосфатных растворов и их вязкостные свойства, определяемые концентрацией, существенно влияют на продолжительность индукционного периода и скорость образования кристаллического продукта. В области исследуемых концентраций алюмофосфатных растворов (см. табл. 4) продолжительность индукционного периода, в течение которого происходит формирование групп фазообразующих молекул, предшествующих образованию зародышей, растет. При этом заметно изменяется скорость роста зародышей и массы кристаллизующегося алюмофосфата. В растворах с концентрацией 340 г/л Р2О5, как уже отмечалось выше, преобладают комплексы алюминия с мономерными фосфатными формами, являющиеся фазообразующими. Появление зародышей в таких растворах в результате их гидротермальной обработки при 95–98 °C наблюдается уже через 3,5 ч (см. табл. 4), после чего образуется тонкий слой частичек алюмофосфата, который постепенно увеличивается за счет образования новых зародышей, их роста и через 10 и 40 ч занимает около 65 и 90 % от объема раствора соответственно. Почти аналогичный ход кристаллизации наблюдается и в более концентрированных алюмофосфатных растворах (380-420 г/л Р₂О₅), хотя отличительными особенностями являются увеличение продолжительности индукционного периода, формирования твердой фазы, ее объема по отношению к жидкой фазе (см. табл. 4). Учитывая межмолекулярные взаимодействия и изменение состава водно-солевых растворов с повышением температуры, можно предположить, что продолжительность индукционного периода при фазообразовании в более концентрированных растворах (380-420 г/л Р₂О₅) связана с достижением критического пересыщения и образованием при этом зародышей за счет распада сложных алюмофосфатных комплексов и постепенного накопления мономерных форм. Согласно экспериментальным данным в вязких алюмофосфатных растворах с концентрацией выше 465 г/л P_2O_5 и $E_n > 17,0$ кДж/моль с преобладающей долей сложных полимерных форм комплексных соединений кристаллизация не наблюдается.

Обобщая результаты исследования, следует заметить, что, как известно, пересыщенные системы находятся в метастабильном состоянии. Примером таких систем являются пересыщенные растворы, в данном случае исследуемые алюмофосфатные, в которых равновесие между различными комплексами устанавливается сравнительно медленно. В связи с этим продолжительность индукционного периода и формирования твердой фазы во времени, ее объем не всегда воспроизводимы вследствие изменения условий приготовления алюмофосфатного раствора и продолжительности его старения. Ранее нами показано влияние продолжительности старения алюмофосфатных растворов на размер частиц кристаллизующегося $AIPO_4 \cdot 2H_2O$ [10]. В данной работе исследован процесс кристаллизации алюмофосфата из раствора с концентрацией P_2O_5 420 г/л, продолжительность старения которого составила шесть месяцев при комнатной температуре (см. табл. 4). Образование продукта, представляющего собой пастообразную массу без видимой границы раздела между твердой и жидкой фазами, в гидротермальных условиях при 95–98 °C наблюдалось одновременно во всем объеме раствора (см. табл. 4). Продолжительность индукционного периода составляла 3 ч, после чего происходило быстрое увеличение массы твердой фазы и через 10–12 ч она занимала весь объем и больше не изменялась во времени.

Химический состав полученных продуктов (см. табл. 4) отвечает формуле AlPO₄ · 2H₂O; структура является моноклинной, аналогичной природному метаварисциту; преобладающий размер частиц – 5–10 мкм.

Заключение. Определена температурная зависимость динамической вязкости свежеприготовленных алюмофосфатных растворов с концентрации P_2O_5 от 300 до 485 г/л и рассчитана энергия активации вязкого течения (E_η), которая составляет от ~ 12,0 до ~ 18,0 кДж/моль. Установлено, что с повышением концентрации P_2O_5 от 340 до 420 г/л и значения E_η алюмофосфатных растворов от ~ 12 до ~ 15 кДж/моль увеличивается продолжительность индукционного периода кристаллизации с 3,5 до 6 ч, а также скорость образования твердой фазы. Отмечено, что при E_η выше 17 кДж/моль (соответствует концентрации $P_2O_5 > 465$ г/л) ввиду образования агрегированных полимерных комплексов кристаллизация не происходит.

Список использованных источников

1. Hao, T. Electrorheological Fluids. The Non-aqueous Suspensions / T. Hao. – 1st ed. – Cambridge, Massachusetts, USA: Elsevier Science, 2005. – Vol. 22. – 578 p. https://doi.org/10.1016/s1383-7303(05)x8015-2

2. Разработка составов дисперсных наполнителей для ЭРС / Л.С. Ещенко [и др.] // Фуллерены и наноструктуры в конденсированных средах: материалы XI Междунар. науч. конф, Минск, 24–26 нояб. 2020 г. – Минск: ИТМО НАН Беларуси, 2020. – С. 75–81.

3. Eshchenko, L. S. Preparation and electrorheological properties of anhydrous aluminum orthophosphate / L. S. Eshchenko, E. V. Korobko, A. V. Paniatouski // Inorg. Mater. – 2023. – Vol. 59, №1. – P. 75–80. https://doi.org/10.1134/ S0020168523010077

4. Kniep, R. Orthophosphates in the ternary system Al₂O₃-P₂O₅-H₂O / R. Kniep // Angew. Chem. Int. Ed. – 1986. – Vol. 25, №. 16. – P. 525–534. https://doi.org/10.1002/anie.198605251

5. Kolb, E. D. Solubility and Growth of A1PO₄ in a hydrothermal solvent: HCl / E. D. Kolb, J. C. Grenier, R. A. Laudise // J. Crystal Growth. – 1981. – Vol. 51, iss. 2. – P. 178–182. https://doi.org/10.1016/0022-0248(81)90299-2

6. Solubility, crystal growth and perfection of aluminium orthophosphate / E. D. Kolb [et el.] // J. Crystal Growth. – 1980. – Vol. 50, iss. 2. – P. 83–92. https://doi.org/10.1109/FREQ.1979.200302

7. Bothe, Jr. J. V. Reactivity of alumina toward phosphoric acid / Jr. J. V. Bothe, P. W. Brown // J. Am. Ceram Soc. – 1993. – Vol. 76, iss. 9. – P. 2353–2358. https://doi.org/10.1111/j.1151-2916.1993.tb07776.x

8. Гребенько, Н. В. Влияние условий получения фосфатов алюминия на их физико-химические свойства / Н. В. Гребенько, Л. С. Ещенко, М. И. Кушель // Изв. вузов. Химия и хим. технология. – 1976. – Т. 19, вып. 7. – С. 1070–1073.

9. Гребенько, Н. В. Получение и свойства ортофосфатов алюминия / Н. В. Гребенько, Л. С. Ещенко, В. В. Печковский // Изв. АН СССР. Неорган. материалы. – 1978. – Т. 14, вып. 3. – С. 136–140.

10. Ещенко, Л. С. Особенности синтеза высокодисперсных алюмофосфатов состава AlPO₄·nH₂O / Л. С. Ещенко, О. В. Понятовский // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2021. – Т. 57, № 3. – С. 310–319. https://doi. org/10.29235/1561-8331-2021-57-3-310-319

11. Eshchenko L. S., Paniatouski A. V. Preparation of microcrystalline hydrated aluminum orthophosphate / L. S. Eshchenko, A.V. Paniatouski // The latest research in modern science: experience, traditions and innovations: Collected scientific articles of the X International scientific conference on February 18–19, Morrisville, NC, USA, 2020. – Lulu Press, Morrisville, NC, USA, 2020. – P. 21–26.

12. Рахеб, И. Синтез микропористых кристаллических фосфатов алюминия / И. Рахеб. – М., 1991. – 205 с.

 Ширинкин, Н. Г. Физико-химические исследования пересыщенных водных растворов фторида алюминия / Н. Г. Ширинкин, Н. А. Бердышева // Тр. Урал. науч.-исслед. хим. ин-та. – 1978. – № 5. – С. 21–28.

14. Геллер, Б. Э. Практическое руководство по физикохимии волокнообразующих полимеров: учеб. пособие для вузов / Б. Э. Геллер, А. А. Геллер, В. Г. Чиртулов. – 2-е изд., испр. и доп. – М.: Химия, 1996. – 432 с.

15. Лисин, П. А. Структурно-механическая и термодинамическая характеристика биойогурта / П. А. Лисин, О. Н. Мусина, И. В. Кистер // Техника и технология пищевых производств. – 2014. – № 1. – С. 54–59.

16. Герасимов, В. В. Неорганические полимерные материалы на основе оксидов кремния и фосфора / В. В. Герасимов. – М.: Стройиздат, 1993. – 295 с.

References

1. Hao T. Electrorheological Fluids. The Non-aqueous Suspensions. 1st ed. Cambridge, Massachusetts, USA, *Elsevier Science*, 2005, vol. 22, 578 p. https://doi.org/10.1016/s1383-7303(05)x8015-2

2. Eshchenko L. S., Ponyatovskii O. V., Korobko E. V., Novikova Z. A. Razrabotka sostavov dispersnykh napolnitelei dlya ERS [Development of compositions of dispersed fillers for ERS]. *Materialy XI Mezhdunarodnoi nauchnoi konferentsii «Fullereny i nanostruktury v kondensirovannykh sredakh» [Materials of the international scientific conference "Fullerenes and nanostructures in condensed matte"], 24–26 November, Minsk, 2020.* Minsk, Institut teplo- i massoperenosa imeni natsional'noi akademii nauk Belarusi, 2020, pp. 75–81 (in Russian).

3. Eshchenko L. S., Korobko E. V., Paniatouski A. V. Preparation and electrorheological properties of anhydrous aluminum orthophosphate. *Inorganic Materials*, 2023, vol. 59, no. 1, pp. 75–80. https://doi.org/10.1134/S0020168523010077

4. Kniep R. Orthophosphates in the ternary system Al₂O₃-P₂O₅-H₂O. Angewandte Chemie International Edition in English, 1986, vol. 25, no. 6, pp. 525–534. https://doi.org/10.1002/anie.198605251

5. Kolb E. D., Grenier J. C., Laudise R. A. Solubility and Growth of A1PO₄ in a hydrothermal solvent: HCl. *Journal of Crystal Growth*, 1981, vol. 51, iss. 2, pp. 178–182. https://doi.org/10.1016/0022-0248(81)90299-2

6. Kolb E. D., Barns R. L., Laudise R. A., Grenier J. C. Solubility, crystal growth and perfection of aluminium orthophosphate. *Journal of Crystal Growth*, 1980, vol. 50, iss. 2, pp. 83–92. https://doi.org/10.1109/FREQ.1979.200302

7. Bothe Jr. J. V., Brown P. W. Reactivity of alumina toward phosphoric acid. *Journal of the American Ceramic Society*, 1993, vol. 76, iss. 9, pp. 2353–2358. https://doi.org/10.1111/j.1151-2916.1993.tb07776.x

8. Greben'ko N. V., Eshchenko L. S., Kushel' M. I. Vliyanie uslovii polucheniya fosfatov alyuminiya na ikh fizikokhimicheskie svoistva [Influence of conditions for obtaining aluminum phosphates on their physicochemical properties]. *Izvestiya VUZov. Khimiya i khimicheskaya tekhnologiya = Russian jornal of chemistry and chemical technology*, 1976, vol. 19, iss. 7, pp. 1070–1073 (in Russian).

9. Greben'ko N. V., Eshchenko L. S., Pechkovskii V. V. Poluchenie i svoistva ortofosfatov alyuminiya [Preparation and properties of aluminum orthophosphates]. *Izvestiya Akademii nauk SSSR. Neorganicheskie materialy = Proceedings of the NAS of the USSR. Inorganic materials*, 1978, vol. 14, iss. 3, pp. 136–140 (in Russian).

10. Eshchenko L. S., Paniatouski A. V. Features of the synthesis of highly dispersed alumophosphates $AIPO_4 \cdot nH_2O$. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Science of Belarus. Chemical series, 2021, vol. 57, no. 3, pp. 310–319 (in Russian). https://doi.org/10.29235/1561-8331-2021-57-3-310-319

11. Eshchenko L. S., Paniatouski A. V. Preparation of microcrystalline hydrated aluminum orthophosphate. In: The latest research in modern science: experience, traditions and innovations: Collected scientific articles of the X International scientific conference on February 18–19, Morrisville, NC, USA, 2020. Lulu Press, Morrisville, NC, USA, 2020, pp. 21–26.

12. Rakheb I. Sintez mikroporistykh kristallicheskikh fosfatov alyuminiya [Synthesis of microporous crystalline aluminum phosphates]. Ph. D. thesis. Moscow, 1991, 205 p.

13. Shirinkin N. G., Berdysheva N. A. Fiziko-khimicheskie issledovaniya peresyshchennykh vodnykh rastvorov ftorida alyuminiya [Physico-chemical studies of supersaturated aqueous solutions of aluminum fluoride] // Trudy ural'skogo nauchno-issledovatel'skogo khimicheskogo instituta = Proceedings of the Ural Chemical Research Institute, 1978, no. 5, pp. 21–28, (in Russian).

14. Geller B. E., Geller A. A., Chirtulov V. G. Prakticheskoe rukovodstvo po fizikokhimii voloknoobrazuyushchikh polimerov: Uchebnoe posobie dlya vuzov [Practical guide to the physicochemistry of fiber-forming polymers: Textbook for universities]. 2nd ed. Moscow, Khimiya = Chemistry Publ., 1996, 432 p.

15. Lisin P. A., Musina O. N., Kister I. V. Strukturno-mekhanicheskaya i termodinamicheskaya kharakteristika bioiogurta [Structural-mechanical and thermodynamic characteristics of bio-yogurt]. *Tekhnika i tekhnologiya pishchevykh proizvodstv* = *Food Processing. Techniques and Technology*, 2014, no. 1, pp. 54–59 (in Russian).

16. Gerasimov V. V. Neorganicheskie polimernye materialy na osnove oksidov kremniya i fosfora [Inorganic polymer materials based on silicon and phosphorus oxides]. Moscow, Stroiizdat Publ., 1993, 295 p. (in Russian).

Информация об авторах

Ещенко Людмила Семеновна – доктор технических наук, профессор, профессор кафедры. Белорусский государственный технологический университет (ул. Свердлова 13а, 220006, г. Минск, Республика Беларусь). E-mail: yeshchanko@belstu.by

Понятовский Олег Витальевич – магистр, аспирант. Белорусский государственный технологический университет (ул. Свердлова 13а, 220006, г. Минск, Республика Беларусь). E-mail: oleg.ponyatovskiy@gmail.com

Information about the authors

Eshchenko Lyudmila S. – D. Sc. (Engineering), Professor, Professor of the Department. Belarusian State Technological University (13a, Sverdlov Str., 220006, Minsk, Republic of Belarus). E-mail: yeshchanko@belstu.by

Paniatouski Aleh V. – M. Sc., Postgraduate Student. Belarusian State Technological University (13a, Sverdlov Str., 220006, Minsk, Republic of Belarus). E-mail: oleg. ponyatovskiy@gmail.com