Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

THERMAL EXPANSION, ELECTRICAL CONDUCTIVITY AND OXYGEN NONSTOICHIOMETRY OF La2-xSrxNiO4-δ NICKELATES AS PROSPECTIVE SOFC CATHODE MATERIALS

Abstract

La2-xSrxNiO4-δ (x = 1.0–1.6) nickelates were evaluated as potential cathode materials for solid oxide fuel cells, with focus on the structural stability, oxygen nonstoichiometry and electrical conductivity under oxidizing conditions. All studied ceramic materials were found to preserve K2NiF4-type tetragonal structure under oxidizing conditions at 25–900  °С.
La2-xSrxNiO4-δ (x = 1.0–1.6) nickelates demonstrate oxygen deficiency at temperatures above 500 °С, with oxygen nonstoichiometry increasing with temperature and strontium content. The electrical conductivity is p-type and show metallic-like behavior under oxidizing conditions at 500–1000 °С. The highest conductivity values, 220 S/cm at 900 °С and 440  S/cm at 600 °С in air, are measured for La0,8Sr1,2NiO4-δ ceramics. While the high-temperature XRD studies revealed strongly anisotropic thermal expansion of La2-xSrxNiO4-δ crystal lattice, the lattice volume show nearly linear dependence on temperature, with average linear thermal expansion coefficients varying in the range (14.2–15.6) · 10-6 K-1.

About the Authors

E. S. Kravchenko
Belarusian State University
Russian Federation
M. Sc. (Chemistry), student.


K. V. Zakharchuk
CICECO – Aveiro Institute of Materials
Russian Federation
Research Fellow.


A. A. Yaremchenko
CICECO – Aveiro Institute of Materials
Russian Federation
Ph. D. (Chemistry), Principal Researcher


J. Grins
Stockholm University
Russian Federation
Ph. D. (Chemistry), Researcher.


G. Stockholm University,
Stockholm University
Russian Federation
D. Sc. (Chemistry), Professor, Head of the Department.


V. V. Pankov
Belarusian State University
Russian Federation
D. Sc. (Chemistry), Professor, Head of Departament "Physical Chemistry"


E. V. Petrova
Belarusian State University
Russian Federation
M. Sc. (Chemistry), student.


References

1. Appleby, A. J. Fuel cell technology: Status and future prospects / A. J. Appleby // Energy. – 1996. – Vol. 21. – P. 521–653.

2. Kordesch, K. V. Environmental Impact of Fuel Cell Technology / K. V. Kordesch, G. R. Simader // Chem. Rev. – 1995. – Vol. 95. – P. 191–207.

3. Minh, N. Solid oxide fuel cell technology – features and applications / N. Minh // Solid State Ionics. – 2004. – Vol. 174. – P. 271–277.

4. Ralphz, J. M. Materials for lower temperature solid oxide fuel cells / J. M. Ralphz, A. C. Schoeler, M. Krumpelt // J. of materials science. – 2001. – Vol. 36. – P. 1161–1172.

5. Intermediate temperature solid oxide fuel cells / D. J. Brett [et al.] // Chem. Soc. Rev. – 2008. – Vol. 37. – P. 1568–1578.

6. Wachsman, E. D. Lowering the temperature of solid oxide fuel cells / E. D. Wachsman, K. T. Lee // Science. – 2011. – Vol. 334. – P. 935–939.

7. Sammes, N. Phosphoric acid fuel cells: fundamentals and applications / N. Sammes, R. Bove, K. Stahl // Curr. Opin. Solid State Mater. Sci. – 2004. – Vol. 8. – P. 372–378.

8. Brian, C. H. Materials for fuel-cell technologies / C. H. Brian, A. Heinzel // Nature. – 2001. – Vol. 414. – P. 345–352.

9. Wachsman, E. Low-Temperature Solid-Oxide Fuel Cells / E. Wachsman, T. Ishihara, J. Kilner // MRS Bull. – 2014. – Vol. 39. – P. 773–779.

10. Performance of perovskite-related oxide cathodes in contact with lanthanum silicate electrolyte / A. A. Yaremchenko [et al.] // Solid State Ionics. – 2009. – Vol. 180. – P. 878–885.

11. Solid Oxide Fuel Cells: From Materials to System Modeling / Y. Wang [et al.] // The Royal Society of Chemistry, London, UK. – 2013. – Ch. 3. – P. 56–88.

12. Solid Oxide Fuel Cells: Materials Properties and Performance / J. Fergus [et al.] // CRC Press, Boca Raton, U. S. – 2013. – P. 54.

13. Skinner, S. J. Oxygen diffusion and surface exchange in La2-xSrxNiO4+d / S. J. Skinner, J. A. Kilner // Solid State Ionics. – 2000. – Vol. 135. – P. 709–712.

14. Tsipis, E. V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trendsand selected methodological aspects / E. V. Tsipis, V. V. Kharton // J. Solid State Electrochem. – 2011. – Vol.15. – P. 1007–1040.

15. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solidoxide fuel cells / L-P. Sun [et al.] // J. of Power Sources. – 2008. – Vol. 183. – P. 43–48.

16. Progress in material selection for solid oxide fuel cell technology: A review / N. Mahato [et al.] // Progress in Materials Science. – 2015. – Vol. 72. – P. 141–337.

17. Makhnach, L. V. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelatesLa2-xSrxNiO4-δ (x = 1 and 1,4) / L. V. Makhnach, V. V. Pankov, P. Strobel // Materials Chemistry and Physics. – 2008. – Vol. 111. – P. 125–130.

18. Composition and conductivity of some nickelates / V. V. Vashook [et al.] // Solid State Ionics. – 1999. – Vol. 119. – P. 23–30.

19. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1,6) / Y. Takeda [et al.] // Materials ResearchBulletin. – 1990. – Vol. 25. – P. 293–306.

20. Hayashi, H. Thermal expansion of Sr- and Mg-doped LaGaO3 / H. Hayashi, M. Suzuki, H. Inaba // Solid State Ionics. –2000. – Vol. 128. – P. 131–139.

21. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFCcathodes / H. Ullmann [et al.] // Solid State Ionics. – 2000. – Vol. 138. – P. 79–90.

22. Tietz, F. Thermal expansion of SOFC materials / F. Tietz // Ionics. – 1999. – Vol. 5. – P. 129–139.

23. Tai, L. Thermochemical stability, electrical conductivity, and seebeck coefficient of Sr-doped LaCo0,2Fe0,8O3-δ / L. Tai, M. M. Nasrallah , H. U. Anderson // J. of Solid State Chemistry. – 1995. – Vol. 118. – P. 117–124.

24. High-temperature characterization of oxygen-deficient K2NiF4-type Nd2-xSrxNiO4-δ (x = 1,0–1,6) for potential SOFC /SOEC applications / E. Kravchenko [et al.] // J. Mater. Chem. A. – 2015. – Vol. 3. – P. 23852–23863.

25. Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+δ (0 < x < 1) / A. Aguadero[et al.] // Dalton Trans. – 2006. – P. 4377–4383.

26. Preparation and electrochemical properties of strontium doped Pr2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells / J. Yang [et al.] // International journal of hydrogen energy. – 2012. – Vol. 37. – P. 1746–1751.

27. Electrical conductivity, Seebeck coefficient, and defect structure of oxygen nonstoichiometric Nd2−xSrxNiO4+δ / T. Nakamura [et al.] // Materials Chemistry and Physics. – 2010. – Vol. 122. – P. 250–258.

28. Advanced anodes for high-temperature fuel cells / A. Atkinson [et al.] // Nature Materials. – 2004. – Vol. 3. – P. 17–27.

29. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides / E. Boehm [et al.] // Solid StateIonics. 2005. – Vol. 176. – P. 2717–2725.


Review

Views: 659


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)