SYNTHESIS OF NOVEL 6-AZAPYRIMIDINE 2′(3′)-FLUORODEOXY NUCLEOSIDES
Abstract
to improve the pharmacological properties of a biologically active molecule. Essential modifications that led to the discovery of fluorinated nucleosides with biological activity are substitutions at 2′- and 3′-positions deoxy-furanosyl moiety. Novel 6-azathymine 2′(3′)-fluorodeoxy nucleosides have been prepared by the silyl method starting from persilylated 6-azathymine and 1-O-acetyl-2,5-di-O-benzoyl-3-deoxy-3-fluoro-α,β-D-ribofuranose or 3,5-di-O-benzoyl-2-deoxy-2-fluoro-β-D-arabino-furanosyl bromide. Debenzoylation of protected 6-azathymine 2′(3′)-fluorodeoxy nucleosides with methanolic ammonia resulted in the corresponding fluorinated nucleosides in good yields. Along with the main products of the deprotection, their 5′-O-benzoyl derivatives were isolated. Conversion of the 6-azathymine 2′(3′)-fluorodeoxy nucleosides into 5-methyl-6-azacytosine 2′(3′)-fluorodeoxy nucleosides was accomplished via the corresponding 4-thioderivatives. The structures of all synthesized nucleosides were proved by UV-, NMR- and mass-spectroscopy. Novel 6-azapyrimidine 2′(3′)-fluorodeoxy nucleosides are of interest as potential antiviral and anticancer agents.
About the Authors
T. S. BozhokBelarus
Senior Researcher
E. N. Kalinichenko
Belarus
Corr. Member, Dr. Sc. (Chemistry), Deputy Director for scientific activity and innovations.
References
1. Liu, P. Fluorinated nucleosides: Synthesis and biological implication / P. Liu, A. Sharon, C. K. Chu // J. Fluorine Chem. – 2008. – Vol. 129, iss. 9. – P. 743–766.
2. Wojtowicz-Rajchel, H. Synthesis and applications of fluorinated nucleoside analogues / H. Wojtowicz-Rajchel //J. Fluorine Chem. – 2012. – Vol. 143. – P. 11–48.
3. The Use of Bioisosterism in Drug Design and Molecular Modification / P. L. Gaikwad [et al.] // Am. J. PharmTech Res. – 2012. – Vol. 2, iss. 4. – P. 1–23.
4. Synthesis and Antiviral Activity of Novel Acyclic Nucleoside Analogues of 5-(1-Azido-2-haloethyl)uracils / R. Kumar [et al.] // J. Med. Chem. – 2001. – Vol. 44, iss. 24. – P. 4225–4229.
5. Structure-Activity Relationships of C6-Uridine Derivatives Targeting Plasmodia Orotidine Monophosphate Decarboxylase / A. M. Bello [et al.] // J. Med. Chem. – 2008. Vol. 51, iss. 3. – P. 439–448.
6. Skoda, S. Azapyrimidine Nucleosides / S. Skoda // Antineoplastic and Immunosuppressive Agents / H. T. Abelson [et al.]; ed.: A. C. Sartorelli, D. G. Johns. – Part II. – New York, 1975. – Р. 348–364.
7. Studies on 6-azauridine and 6-azacytidine. I. Toxicity studies of 6-azauridine and 6-azacytidine in mice / Z. Jiricka [et al.] // Biochem. pharmacol. – 1965. – Vol. 14, iss. 11. – Р. 1517–1523.
8. Timmis, G. M. Antagonists of purine and pyrimidine metabolites and of folic acid // Advances in Cancer Research /O. Bodansky [et al.]; ed.: A. Haddow and S. Weinhouse. – New York and London, 1961. – P. 369–397.
9. Jasamai, M. 6-Azathymidine-4′-thionucleosides: synthesis and antiviral evaluation / M. Jasamai, J. Balzarini, C. Simons // J. Enzyme Inhib. Med. Chem. – 2008. – Vol. 23, iss 1. – P. 56–61.
10. Kissman, H. K. Puromycin. Synthetic Studies. XI. D-Ribofuranosyl Derivatives of 6-Dimethylaminopurine /H. K. Kissman, C. Pidacks, B. R. Baker // J. Am. Chem. Soc. – 1955. – Vol. 77, iss. 1. – P. 18–24.
11. Synthesis and antiviral and cytostatic properties of 3′-deoxy-3′-fluoro- and 2′-azido-3′-fluoro-2′,3′-dideoxy-D-ribofuranosides of natural heterocyclic bases / I. A. Mikhailopulo [et al.] // J. Med. Chem. – 1991. – Vol. 34, iss. 7. – P. 2195–2202.
12. Vorbruggen, H. Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyltriflate and perchlorate as catalysts / H. Vorbruggen, K. Krolekevich, B. Bennua // Chem. Ber. – 1981. – Vol. 114, iss. 4. – P. 1234–1255.
13. Niedballa, U. Allgemeine Synthese von Pyrimidin-nucleosiden / U. Niedballa, H. Vorbruggen // Angew. Chem. – 1970. – Vol. 82, iss. 11. – P.449–450.
14. Ishido, Y. Partial protection of carbohydrate derivatives. Part 3. Regioselective 2′-O-deacylation of fully acylated purine and pyrimidine ribonucleosides with hydrazine hydrate / Y. Ishido, N. Nakazaki, N. Sakairi // J. Chem. Soc., Perkin Trans. 1. – 1979. – P. 2088–2098.
15. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)-5-iodouracil (.beta.-FIAU) and 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)thymine (.beta.-FMAU) / C. H. Tann [et al.] //J. Org. Chem. – 1985. – Vol. 50, iss. 19. – P. 3644–3647.
16. Tong, G. A convenient synthesis of 6-aza-2′-deoxycytidine / G. Tong, W. Lee, L. Goodman // J. Heterocycl. Chem. – 1966. – Vol. 3, iss. 2. – P. 226–227.
17. Hall, R. H. Riboside Derivatives of 6-Methyl-asym-triazine-3,5(2,4)-dione / R. H. Hall // J. Am. Chem. Soc. – 1958. –Vol. 80, iss. 5. – P. 1145–1150.
18. Bozhok, T. S. and Kalinichenko, Е. N. (2014) «Synthesis of 5-azacytidine fluorinated analogues», Vestsi NAN Belarusi. Seryya khimіchnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Chemistry Series], no. 3, pp. 53–59.
19. Pretsch, E. Structure determination of organic compounds: tables of spectral data / E. Pretsch, F. Bühlmann, K. Affolter. – 3. ed. – New York: Springer-Verlag Berlin Heidelberg, 2000. – XV, 421 p.
20. Prystaš, M. Nucleic acids components and their analogues. CXXI. Glycosylation of 6-azathymine by the silylation process / M. Prystaš, F. Šorm // Collect. Czech. Chem. Commun. – 1969. – Vol. 34, iss. 3. – P. 1104–1107.