1. Sosnov A.V., Ivanov R.V., Balakin K.V., Shobolov D.L., Fedotov Yu.A. and Kalmykov Yu.M., ″Development of the drug delivery systems via micro- and nanoparticles″, Kachestvennaya klinicheskaya praktika [Quality clinical practice], 2008, no. 2,pp. 4-12.
2. Podol’tsev A.D. and Kondratenko I.P., ″Synthesis of the optimal magnetic system with constant magnets for targeted delivery of magnetic nanoparticles to the desired area of biological media″, Tekhnіchna elektrodinamіka [Technical electrodynamics], 2013, no. 4, pp. 3-9.
3. Nishio K., Ikeda M., Gokon N., Tsubouchi S., Narimatsu H., Mochizuki Y., Sakamoto S., Sandhu A., Abe M. and Handa H., ″Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications″, Journal of Magnetism and Magnetic Materials, 2007, vol. 310, pp. 2408-2410.
4. Petri-Fink A., Chastellain M., Juillerat-Jeanneret L., Ferrari A. and Hofmann H., ″Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells″, Biomaterials, 2005, vol. 26, pp. 2685-94.
5. Gupta A.K. and Gupta M., ″Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications″, Biomaterials, 2005, vol. 26, pp. 3995-4021.
6. Sperling R.A. and Parak W.J., ″Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles″, Philosophical Transactionsof the Royal Society A, 2010, vol. 368, pp. 1333-1383.
7. Suzdalev I.P., Maksimov Yu.V., Imshennik V.K., Novichikhin S.V., Ivanovskaya M.I., Kotikov D.A., Pan’kov V.V. and Lyubina Yu.V., ″Magnetic nanostructures based on iron oxide nanoclasters″, Rossiiskie nanotekhnologii [Russian Nanotechnologies],2010, vol. 5, no. 11-12, pp. 104-111.
8. Hochepied J., Bonville P. and Pileni M., ″Nonstoichiometric zinc ferrite nanocrystals: synthesis and unusual magnetic properties″, Journal of Physical Chemistry B, 2000, vol. 104, pp. 905-912.
9. Nedkov I., Merodiiska T., Slavov L., Vandenberghe R.E., Kusano Y. and Takada J., ″Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation″, Journal of Magnetism and Magnetic Materials, 2006, vol. 300,pp. 358-367.
10. Mizukoshi Y., Shuto T., Masahashi N. and Tanabe S., ″Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants″, Ultrasonics Sonochemistry, 2009, vol. 16,pp. 525-31.
11. Boer J. and Burckhardt W., ″Nanosize powders prepared by flame pyrolysis″, Key engineering materials, 1999,vol. 132-136, pp. 153-162.
12. Daigle A., Modest J., Geiler A.L., Gilette S., Chen Y., Geiler M., Hu B., Kim S., Stopher K., Vittoria C. and Harris V.G., ″Structure, morphology and magnetic properties of MgxZn1-xFe2O4 ferrites prepared by polyol and aqueous coprecipitation methods: a low-toxicity alternative to NixZn1-xFe2O4 ferrites″, Nanotechnology, 2011, vol. 22, pp. 305708-14.
13. Da Silva S.W., Nakagomi F., Silva M.S., Franco Jr.A., Garg V.K., Oliveira A.C. and Morais P.C., ″Raman study of cations distribution in ZnxMg1-xFe2O4 nanoparticles″, Journal of Nanoparticle Research, 2012, vol. 14, pp. 798-807.
14. Franco Jr.A., Pessoni H.V.S. and Machado F.L.A., ″Spin-wave stiffness parameter in ferromagnetic systems: Nanopariculate powders of (Mg, Zn)Fe2O4 mixed ferrites″, Journal of Applied Physics, 2015, vol. 118, pp. 173904-11.
15. O’Neill H.S.C. and Navrotsky A., ″Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution″, American Mineralogist, 1983, vol. 68, pp. 181-194.
16. Bushkova, V.S., ″Synthesis of the nanoferrites obtained by sol-gel autocombustion method″, Journal of Nano- and Electronic Physics, 2015, vol. 7(1), pp. 010123-32..