PHYSICO-CHEMICAL PROPERTIES OF MAGNETIC Mg1–xZnxFe2O4 NANOPARTICLES PREPARED BY DIFFERENT METHODS
Abstract
properties of the nanoparticles on their chemical composition and synthesis conditions have been studied. The crystallinity degree and particle size tend to increase with the increase of the synthesis temperature and duration. The saturation magnetization of the nanoparticles increase as well due to cation redistribution between spinel structure sublattices, which is accompanied by reduction of the inversion degree. In the case of spray pyrolysis method, the correlation between saturation magnetization and ferrite composition is weak, while for coprecipitation and the nitrate-citrate approach it goes through a maximum. The highest saturation magnetization of 30 а∙m2∙kg–1 relates to kg0,5Zn0,5Fe2O4 sample obtained by the nitrate-citrate approach.
About the Authors
E. G. PetrovaBelarus
M. Sc. (Chemistry), Ph. D. student
D. A. Kotsikau
Belarus
Ph. D. (Chemistry), Associate Professor, assistant professor
V. O. Natarov
Belarus
Master student
V. V. Pankov
Belarus
D. Sc. (Chemistry), P rofessor, Head of the Physical Chemistry Department
References
1. Sosnov A.V., Ivanov R.V., Balakin K.V., Shobolov D.L., Fedotov Yu.A. and Kalmykov Yu.M., ″Development of the drug delivery systems via micro- and nanoparticles″, Kachestvennaya klinicheskaya praktika [Quality clinical practice], 2008, no. 2,pp. 4–12.
2. Podol’tsev A.D. and Kondratenko I.P., ″Synthesis of the optimal magnetic system with constant magnets for targeted delivery of magnetic nanoparticles to the desired area of biological media″, Tekhnіchna elektrodinamіka [Technical electrodynamics], 2013, no. 4, pp. 3–9.
3. Nishio K., Ikeda M., Gokon N., Tsubouchi S., Narimatsu H., Mochizuki Y., Sakamoto S., Sandhu A., Abe M. and Handa H., ″Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications″, Journal of Magnetism and Magnetic Materials, 2007, vol. 310, pp. 2408–2410.
4. Petri-Fink A., Chastellain M., Juillerat-Jeanneret L., Ferrari A. and Hofmann H., ″Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells″, Biomaterials, 2005, vol. 26, pp. 2685–94.
5. Gupta A.K. and Gupta M., ″Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications″, Biomaterials, 2005, vol. 26, pp. 3995–4021.
6. Sperling R.A. and Parak W.J., ″Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles″, Philosophical Transactionsof the Royal Society A, 2010, vol. 368, pp. 1333–1383.
7. Suzdalev I.P., Maksimov Yu.V., Imshennik V.K., Novichikhin S.V., Ivanovskaya M.I., Kotikov D.A., Pan’kov V.V. and Lyubina Yu.V., ″Magnetic nanostructures based on iron oxide nanoclasters″, Rossiiskie nanotekhnologii [Russian Nanotechnologies],2010, vol. 5, no. 11–12, pp. 104–111.
8. Hochepied J., Bonville P. and Pileni M., ″Nonstoichiometric zinc ferrite nanocrystals: synthesis and unusual magnetic properties″, Journal of Physical Chemistry B, 2000, vol. 104, pp. 905–912.
9. Nedkov I., Merodiiska T., Slavov L., Vandenberghe R.E., Kusano Y. and Takada J., ″Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation″, Journal of Magnetism and Magnetic Materials, 2006, vol. 300,pp. 358–367.
10. Mizukoshi Y., Shuto T., Masahashi N. and Tanabe S., ″Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants″, Ultrasonics Sonochemistry, 2009, vol. 16,pp. 525–31.
11. Boer J. and Burckhardt W., ″Nanosize powders prepared by flame pyrolysis″, Key engineering materials, 1999,vol. 132–136, pp. 153–162.
12. Daigle A., Modest J., Geiler A.L., Gilette S., Chen Y., Geiler M., Hu B., Kim S., Stopher K., Vittoria C. and Harris V.G., ″Structure, morphology and magnetic properties of MgxZn1–xFe2O4 ferrites prepared by polyol and aqueous coprecipitation methods: a low-toxicity alternative to NixZn1–xFe2O4 ferrites″, Nanotechnology, 2011, vol. 22, pp. 305708–14.
13. Da Silva S.W., Nakagomi F., Silva M.S., Franco Jr.A., Garg V.K., Oliveira A.C. and Morais P.C., ″Raman study of cations distribution in ZnxMg1–xFe2O4 nanoparticles″, Journal of Nanoparticle Research, 2012, vol. 14, pp. 798–807.
14. Franco Jr.A., Pessoni H.V.S. and Machado F.L.A., ″Spin-wave stiffness parameter in ferromagnetic systems: Nanopariculate powders of (Mg, Zn)Fe2O4 mixed ferrites″, Journal of Applied Physics, 2015, vol. 118, pp. 173904–11.
15. O’Neill H.S.C. and Navrotsky A., ″Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution″, American Mineralogist, 1983, vol. 68, pp. 181–194.
16. Bushkova, V.S., ″Synthesis of the nanoferrites obtained by sol-gel autocombustion method″, Journal of Nano- and Electronic Physics, 2015, vol. 7(1), pp. 010123–32..