EFECT OF SINTERING METHOD ON MICROSTRUCTURE OF ND0.4SR1.6NIO4–D CERAMICS
Abstract
Nd0.4Sr1.6NiO4–d tetragonal lattice. On the contrary, spark plasma sintering (SPS) at 1100 °C enables fabrication of dense gastight ceramics, but is accompanied by the structural transformation from tetragonal (I4/mmm) to orthorhombic (Immm) symmetry due to oxygen losses from the lattice under low-p(O2) conditions of SPS process. The post-treatment conditions were optimized to oxidize sintered samples and to restore tetragonal structure while preserving gas-tightness of ceramics.
About the Authors
E. S. KravchenkoBelarus
M.Sc. degree, Ph.D. student Department of Chemistry
A. A. Yaremchenko
Portugal
D. degree, Principal Researcher.
J. Grins
Sweden
Ph.D. degree, Researcher.
G. Svensson
Sweden
Ph.D. degree, Professor, Head of the Department
References
1. Kravchenko E., Khalyavin D., Zakharchuk K., Grins J., Svensson G., Pankov V. and Yaremchenko A., ″High-temperature characterization of oxygen-deficient K2NiF4-type Nd2–xSrxNiO4–d (x = 1.0–1.6) for potential SOFC/SOEC applications″, Journal of Materials Chemistry A, 2015, vol. 3, pp. 23852–23863.
2. Gómez S. Y. and Hotza D., ″Current developments in reversible solid oxide fuel cells″, Renewable and Sustainable Energy Reviews, 2016, vol. 61, pp.155–174.
3. Mahato N., Banerjee A., Omar S. and Balani K., ″Progress in material selection for solid oxide fuel cell technology: A review″, Progress in Materials Science, 2015, vol. 72, pp. 141–337.
4. Boldin M.S., Fizicheskie osnovy tekhnologii elektroimpul’snogo plazmennogo spekaniya: uchebno-metodicheskoe posobie [Physical fundamentals of Spark Plasma Sintering: a guidance manual], Nizhegorodskii gosuniversitet, Nizhny Novgorod, RU, 2012.
5. Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J. and Herrmann M., ″Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments″, Advanced Engineering Materials, 2014, vol. 16, pp. 830–849.
6. Omori M., ″Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)″, Materials Science and Engineering A, 2000, vol. 287, pp. 183–188.
7. Song C.L., Wu Y.J., Liu X.Q. and Chen X.M., ″Dielectric properties of La1.75Ba0.25NiO4 ceramics prepared by spark plasma sintering″, Journal of Alloys and Compounds, 2010, vol. 490, pp. 605–608.
8. Song C.L., Wu Y.J., Liu X.Q. and Chen X.M., ″Giant dielectric constant in Nd2NiO4+δ ceramics obtained by spark plasma sintering″, Ceramics International, 2011, vol. 37, pp. 2423–2427.
9. Clarke F.J.P., ″Residual strain and the fracture stress-grain size relationship in brittle solids″, Acta Metallurgica, 1964, vol. 12, pp. 139–143.
10. Davidge R.W. and Tappin G., ″Internal strain energy and the strength of brittle materials″, Journal of Materials Science, 1968, vol. 3, pp. 297–301.
11. Kuszyk J.A. and Bradt R.C., ″Influence of grain size on effects of thermal expansion anisotropy in MgTi2O5″, Journal of the American Ceramic Society, 1973, vol. 56, pp. 420–423.
12. Matsuo Y. and Sasaki H., ″Effect of grain size on microcracking in lead titanate ceramics″, Journal of the American Ceramic Society, 1966, vol. 49, pp. 229–230.
13. Evans A.G., ″Microfracture from thermal expansion anisotropy-I. Single phase systems″, Acta Metallurgica, 1978, vol. 26, pp. 1845–1853.
14. Ami T., Crawford M.K., Harlow R.L., Wang Z.R., Johnston D.C. and Huang Q., ″Magnetic susceptibility and lowtemperature structure of the linear chain cuprate Sr2CuO3″, Physical Review B, 1995, vol. 51, pp. 5994–6001.