Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis and photoelectrochemical properties of bismuth thioiodide

https://doi.org/10.29235/1561-8331-2018-54-4-413-418

Abstract

The method of chemical deposition of monocrystalline bismuth thioiodide BiSI needles with a high quantum efficiency of photocurrent generation (up to 55 %) in aqueous solutions of electrolytes has been developed. It was revealed that the introduction of sulfide and iodide anions into the electrolyte solution leads to an increase of the absolute photocurrent values, as well as the presence of sulfide ions causes the significant (about 0.5 V) shift of BiSI bands energy towards more negative electrode potentials. The observed effect is of interest for increasing the photovoltage of solar cells based on BiSI and can find application in heterogeneous sensitized systems for increasing the efficiency of photoelectrons injection from a narrow-band sensitizer into a matrix of a wide-bandgap semiconductor.

About the Authors

M. E. Kazyrevich
Belarusian State University, Minsk
Belarus
Assistant of the Electrochemistry Department


D. Y. Ivashenka
Belarusian State University, Minsk
Belarus
Master Student of the Faculty Chemistry


E. A. Bondarenko
Belarusian State University, Minsk
Belarus
Junior Researcher


E. A. Streltsov
Belarusian State University, Minsk
Belarus
D. Sc. (Chemistry), Professor, Head of the Electrochemistry Department


A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Minsk
Belarus
Corresponding Member, D. Sc. (Chemistry), Professor, Head of the Institute


References

1. Martinez L., Bernechea M., De Arquer F. P. G., Konstantatos G. Near IR-sensitive, non-toxic, polymer/nanocrystal solar cells employing Bi2S3 as the electron acceptor. Advanced Energy Materials, 2011, vol. 1, no. 6, pp. 1029–1035. https://doi. org/10.1002/aenm.201100441

2. Sankapal B. R., Lokhande C. D. Photoelectrochemical characterization of Bi2Se3 thin films deposited by SILAR technique. Materials Chemistry and Physics, 2002, vol. 73, no. 2–3, pp. 151–155. https://doi.org/10.1016/s0254-0584(01)00362-5

3. Dou Y., Wu F., Fang L., Liu G., Mao C., Wan K., Zhou M. Enhanced performance of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the synergistic effect of photovoltaic and thermoelectric conversion. Journal of Power Sources, 2016, vol. 307, pp. 181–189. https://doi.org/10.1016/j.jpowsour.2015.12.113

4. Kazyrevich M. E., Malashchonak M. V., Mazanik A. V., Streltsov E. A., Kulak A. I., Bhattacharya C. Photocurrent switching effect on platelet-like BiOI electrodes: Influence of redox system, light wavelength and thermal treatment. Electrochimica Acta, 2016, vol. 190, pp. 612–619. https://doi.org/10.1016/j.electacta.2015.12.229

5. Zhao K., Zhang X., Zhang L. The first BiOI-based solar cells. Electrochemistry Communications, 2009, vol. 11, no. 3, pp. 612–615. https://doi.org/10.1016/j.elecom.2008.12.041

6. Wang K., Jia F., Zheng Z., Zhang L. Crossed BiOI flake array solar cells. Electrochemistry Communications, 2010, vol. 12, no. 12, pp. 1764–1767. https://doi.org/10.1016/j.elecom.2010.10.017

7. Luz A., Conradt J., Wolff M., Kalt H., Feldmann C. P-DSSCs with BiOCl and BiOBr semiconductor and polybromide electrolyte. Solid State Sciences, 2013, vol. 19, pp. 172–177. https://doi.org/10.1016/j.solidstatesciences.2013.02.021

8. Meng S., Zhang X., Zhang G., Wang Y., Zhang H., Huang F. Synthesis, crystal structure, and photoelectric properties of a new layered bismuth oxysulfide. Inorganic Chemistry, 2015, vol. 54, no. 12, pp. 5768–5773. https://doi.org/10.1021/acs. inorgchem.5b00436

9. Pacquette A. L., Hagiwara H., Ishihara T., Gewirth A. A. Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3composite. Journal of Photochemistry and Photobiology A: Chemistry, 2014, vol. 277, pp. 27–36. https://doi.org/10.1016/j.jphotochem.2013.12.007

10. Bondarenko E. A., Streltsov E. A., Malashchonak M. V., Mazanik A. V., Kulak A. I., Skorb E. V. Giant incident photon to-current conversion with photoconductivity gain on nanostructured bismuth oxysulfide photoelectrodes under visible-light illumination. Advanced Materials, 2017, vol. 29, no. 40. https://doi.org/10.1002/adma.201702387

11. Malashchonak M. V., Streltsov E. A., Kuliomin D. A., Kulak A. I., Mazanik A. V. Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy. Materials Chemistry and Physics, 2017, vol. 201, pp. 189–193. https:// doi.org/10.1016/j.matchemphys.2017.08.053

12. Park Y., McDonald K. J., Choi K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev., 2013, vol. 42, no. 6, pp. 2321–2337. https://doi.org/10.1039/c2cs35260e

13. Berglund S. P., Abdi F. F., Bogdanoff P., Chemseddine A., Friedrich D., van de Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chemistry of Materials, 2016, vol. 28, no. 12, pp. 4231–4242. https://doi.org/10.1021/acs.chemmater.6b00830

14. Xie L., Ma J., Xu G. Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B. Materials Chemistry and Physics, 2008, vol. 110, no. 2–3, pp. 197–200. https:// doi.org/10.1016/j.matchemphys.2008.01.035

15. Nogueira A. E., Longo E., Leite E. R., Camargo E. R. Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM). Journal of Colloid and Interface Science, 2014, vol. 415, pp. 89–94. https://doi.org/10.1016/j.jcis.2013.10.010

16. Slikkerveer A., de Wolff F. A. Pharmacokinetics and toxicity of bismuth compounds. Medical Toxicology and Adverse Drug Experience, 1989, vol. 4, no. 5, pp. 303–323. https://doi.org/10.1007/bf03259915

17. Hahn N. T., Self J. L., Mullins C. B. BiSI micro-rod thin films: efficient solar absorber electrodes? The Journal of Physical Chemistry Letters, 2012, vol. 3, no. 11, pp. 1571–1576. https://doi.org/10.1021/jz300515p

18. Hahn N. T., Rettie A. J. E., Beal S. K., Fullon R. R., Mullins C. B. n-BiSI thin films: selenium doping and solar cell behavior. The Journal of Physical Chemistry C, 2012, vol. 116, no. 47, pp. 24878–24886. https://doi.org/10.1021/jp3088397

19. Su X., Zhang G., Liu T., Liu Y., Qin J., Chen C. A facile and clean synthesis of pure bismuth sulfide iodide crystals. Russian Journal of Inorganic Chemistry, 2006, vol. 51, no. 12, pp. 1864–1868. https://doi.org/10.1134/s0036023606120047

20. Peter L. M. The photoelectrochemical properties of anodic Bi2S3 films. Journal of Electroanalytical Chemistry, 1979, vol. 98, no. 1, pp. 49–58. https://doi.org/10.1016/0368-1874(79)87019-7

21. Gurevich Yu. Ya., Pleskov Yu. V. Photoelectrochemistry of semiconductors. Мoscow, Nauka Publ., 1983. 312 p. (in Russian).

22. Minoura H., Watanabe T., Oki T., Tsuiki M. Effects of dissolved Cd2+ and 2– ions on the flatband potential of CdS electrode in aqueous solution. Japanese Journal of Applied Physics, 1977, vol. 16, pp. 865–866. https://doi.org/10.1143/jjap.16.865

23. Peter L. M., Wijayantha K. G. U., Riley D. J., Waggett J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. The Journal of Physical Chemistry B, 2003, vol. 107, pp. 8378–8381. https://doi.org/10.1021/jp030334l


Review

Views: 1025


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)