Synthesis of composite materials based on calcium phosphates and blood components
https://doi.org/10.29235/1561-8331-2019-55-2-135-141
Abstract
Composites based on calcium phosphates in the matrix of biopolymer (citrated plasma and fibrin) were synthesized in neutral and alkaline medium. At pH 7 brushite composites were obtained, whereas at pH 11 amorphized hydroxyapatite was precipitated. Disruption of precipitation conditions led to the formation of tricalcium phosphate impurity, which was detected by XRD after thermal treatment of composites at 800 °C. Composition and morphology of calcium phosphates did not depend on biopolymer nature. To determine bioactivity degree, composites were incubated in model Simulated Body Fluid (SBF) for 75 days. It was found that composites based on amorphized hydroxyapatite incorporated in biopolymer matrix have maximum growth of biomimetic layer of apatite.
About the Authors
I. E. GlazovBelarus
Ilya E. Glazov – Junior researcher
9/1, Surganov Str., 220072, Minsk
R. A. Vlasov
Belarus
Roman A. Vlasov – ENT specialist
4, Zolotaya gorka Str, 220005, Minsk
V. K. Krut’ko
Belarus
Valentina K. Krut’ko – Ph. D. (Chemistry), Associate Professor, Leading researcher
9/1, Surganov Str., 220072, Minsk
O. N. Musskaya
Belarus
Olga N. Musskaya – Ph. D. (Chemistry), Associate Professor, Senior researcher
9/1, Surganov Str., 220072, Minsk
References
1. Dorozhkin S. V. Calcium orthophosphates (CaPO4): occurrence and properties. Progress in biomaterials, 2016, vol. 5, no. 1, pp. 9–70. https://doi.org/10.1007/s40204-015-0045-z
2. Krut’ko V. K., Kulak A. I., Lesnikovich L. A., Musskaya O. N., Trofmova I. V. Composite biomaterials and coatings based on nanocrystalline hydroxyapatite. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 2008, no. 4, pp. 100–105 (in Russian).
3. Vlasov R. A, Mel’nik V. F., Merkulova E. P., Krutsko V. K., Musskaya O. N., Kulak A I., Lesnikovich L. A., Ulasevich S. A. Application of composite materials on the basis of fbrin and hydrogel of hydroxyapatite for rhinoseptoplasty. Otorinolaringologiya. Vostochnaya Evropa = Otorhinolaryngology. Eastern Europe, 2013, vol. 12, no. 3, pp 29–32 (in Russian).
4. Musskaya O. N., Krut’ko V. K., Shchemelyov A. V., Vlasov R. A. Application of «Hydroxyapatite gel» medication in medicine. Medicina = Medicine, 2015, no. 3, pp 70–74 (in Russian).
5. Dorozhkin, S. Calcium orthophosphate-based bioceramics. Materials, 2013, vol. 6, no. 9, pp. 3840–3942. https://doi.org/10.3390/ma6093840
6. Kashkarov, V. M., Goloshchapov D. L., Rumyanceva A. V., Seredim P. V., Domashevskaya E. P., Spivakova I. P., Shumilovich B. R. X-ray diffraction and IR spectroscopy investigation of synthesized and biogenic nanocrystalline hydroxyapatite. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 2011, vol. 5, no. 6, pp. 1162–1167. https://doi.org/10.1134/s1027451011120068
7. Vlasov R. A., Krut’ko V. K., Mel’nik V. F., Kulak A. I., Musskaya O. N., Moskaleva N. V. Non-specifc resistance of epithelial cells to hydroxyapatite. Otorinolaringologiya. Vostochnaya Evropa = Otorhinolaryngology. Eastern Europe, 2016, vol. 6, no. 4, pp. 579–586 (in Russian).
8. Sadat-Shojai M., Khorasani M.-T., Dinpanah-Khoshdargi E., Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 2013, vol. 9, no. 8, pp. 7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012
9. Linsley C. S., Wu B. M., Tawil B. Mesenchymal stem cell growth on and mechanical properties of fbrin-based biomimetic bone scaffolds. Journal of Biomedical Materials Research Part A, 2016, vol. 104, no. 12, pp. 2945–2953. https://doi.org/10.1002/jbm.a.35840
10. Noori A., Ashraf S. J., Vaez-Ghaemi R., Hatamian-Zaremi A., Webster T. J. А review of fbrin and fbrin composites for bone tissue engineering. International journal of nanomedicine, 2017, vol. 12, pp. 4937–4961. https://doi.org/10.2147/ijn.s124671
11. Arora N. S., Ramanayake, T., Ren Y.-F., Romanos G. E. Platelet-rich plasma: a literature review. Implant dentistry, 2009, vol. 18, no. 4, pp. 303–310. https://doi.org/10.2147/ijn.S124671
12. Jalota S., Bhaduri S.B., Tas A. C. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. Journal of Materials Science: Materials in Medicine, 2006, vol. 17, no. 8, pp. 697–707. https://doi.org/10.1007/s10856-006-9680-1
13. Tsuber V. K., Lesnikovich L. A., Kulak A. I., Trofmova I. V., Petrov P. T., Truhacheva T. V., Kovalenko J. D., Krasil’nikova V. L. Synthesis, identifcation and impurities detection in bioactive hydroxyapatite. Pharmaceutical Chemistry Journal, 2006, vol. 40, no. 8. pp. 455–458. https://doi.org/10.1007/s11094-006-0151-2
14. Krut’ko V. K., Kulak A. I., Lesnikovich L. A., Trofmova I. V., Musskaya O. N., Javnerko G. K., Paribok I. V. Influence of method of hydroxyapatite gel dehydratadion on physicochemical properties of nanocrystalline xerogel. Russian Journal of General Chemistry, 2007, vol. 77, no. 3, pp. 336–342. https://doi.org/10.1134/s1070363207030036