Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Quantum-chemical modeling of methotrexate fullerenol radionuclide agents for cancer therapy

https://doi.org/10.29235/1561-8331-2019-55-2-163-170

Abstract

In order to therapeutically destroy cancer neoplasms, chemotherapy or radiotherapy are commonly used. In the isotope medicine, however, medical isotopes of the short-lived radionuclides are injected into the tumor (59Fe, 90Y, 95Zr, 99mTc, 106Ru, 114*In, 147Eu, 148Eu, 155Eu, 170Tm, 188Re, 210Po, 222Rn, 230U, 237Pu, 240Cm, 241Cm, 253Es). Binary, or neutroncapturing, technology is a technology developed for the selective effect on malignant tumors and using a tropic to tumors preparations containing non-radioactive nuclides (10B, 113Cd, 157Gd et. al.). Triadic technology is a sequential administration of a combination of two or more separately inactive and harmless components tropic to tumor tissues that can selectively accumulate in them or react with each other to destroy tumors under certain external impacts. The aim of this work is the quantum-chemical modeling of the electronic structure and the analysis of the thermodynamic stability of the new methotrexate containing nanoscale fullerenolic radionuclide tumor-fghting agents. The need for preliminary studies on modeling of such objects is caused by the very high labor intensity, cost and complexity of their practical preparation.

About the Authors

E. A. Dikusar
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Evgenij A. Dikusar – Ph. D. (Chemistry), Senior researcher

13, Surganov Str., 220072, Minsk



A. L. Pushkarchuk
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Alexander L. Pushkarchuk – Ph. D. (Physics and Mathematics), Senior researcher

13, Surganov Str., 220072, Minsk



T. V. Bezyazychnaya
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Tatsiana V. Bezyazychnaya – Ph. D. (Physics and Mathematics), Senior researcher

13, Surganov Str., 220072, Minsk



V. I. Potkin
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vladimir I. Potkin – Corresponding Member, D. Sc. (Chemistry), Professor, Head of the Department

13, Surganov Str., 220072, Minsk



A. G. Soldatov
Scientifc-practical Material Research Center of the National Academy of Sciences of Belarus
Belarus

Andrei G. Soldatov – Ph. D. (Chemistry), Senior researcher

19, P. Brovka Str., 220072, Minsk



S. A. Kuten
Belarusian State University
Belarus

Siamion A. Kutsen – Ph. D. (Physics and Mathematics), Head of the Laboratory

11, Bobruiskaya Str., 220030, Minsk



S. G. Stepin
Vitebsk State Order of Peoples’ Friendship Medical University
Belarus

Svjatoslav G. Stepin – Ph. D. (Chemistry), Associate Professor

17, Frunze Ave., 210023, Vitebsk



A. P. Nizovtsev
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Alexander P. Nizovtsev – D. Sc. (Physics and Mathematics), Leading researcher

68, Independence Ave., 220072, Minsk



S. Ya. Kilin
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Sergei Y. Kilin – Academician, D. Sc. (Physics and Mathematics), Professor, Head of the Center of Quantum Optics and Quantum Informatics

68, Independence Ave., 220072, Minsk



References

1. Mayles P., Nahum A., Rosenwald J. C. Handbook of Radiation Therapy Physics: Theory and Practice. Taylon & Francis, 2007. 1450 p. https://doi.org/10.1201/9781420012026

2. Hosmane N. S., Maquire J. A., Zhu Y. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment. World Scientifc Publishing Co. Pte. Ltd., 2012. 300 p. https://doi.org/10.1142/8056

3. Vorst A. V., Rosen A., Kotsuka Y. RF/Microwave Interaction with Biological Tissues. IEEE Press, Wiley Interscience, A John Wiley & Sons., Inc., Publ., 2006. 346 p. https://doi.org/10.1002/0471752053

4. Hashikawa Y., Murata M., Wakamiya A., Murata Y. Water Entrapped inside Fullerene Cages: A Potential Probe for Evaluation of Bond Polarization. Angewandte Chemie International Edition, 2016, vol. 55, no. 42, pp. 13109–13113. https://doi.org/10.1002/anie.201607040

5. Zang, R., Murata M., Wakamiya A., Shimoaka T., Hasagawa T., Murata Y. / Isolation of the simplest hydrated acid. Science Advances, vol. 3, no. 4, e1602833. https://doi.org/10.1126/sciadv.1602833

6. Orlova M. A., Trofmova T. P., Orlov A. P., Shatalov O. A., Napolov Yu. K., Svistunov A. A., Chekhonin V. P. Antitumor activity of fullerene derivatives and their possible use for target drug delivery. Onkogematologiya = Oncohematology, 2013, no. 2, pp. 83–89 (in Russian).

7. Ghosh S. K., Chattaraj P. K. Concepts and Methods in Modern Theoretical Chemistry. Atoms, Molecules and Clusters. CRC Press, 2013. 856 p. https://doi.org/10.1201/b15083

8. Shmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A. / General Atomic and Molecular Electronic-Structure System. Journal of Computational Chemistry, 1993, vol. 14, no. 7, pp. 1347–1363. https://doi.org/10.1002/jcc.540141112

9. Huzinaga S., Andzelm J. M., Klobukowski M. Gaussian Basis Sets for Molecular Calculations. Amsterdam: Elsevier, 1984. 340 p.

10. Huennekers F. M. The methotrexate story: a paradigm development of cancer therapeutic agents. Advances in Enzyme Regulation, 1994, vol. 34, no. 1, pp. 392–419. https://doi.org/10.1016/0065-2571(94)90025-6

11. Adelstein S. J., Manning F. J. Isotopes for Medicine and the Life Sciences. Committee on Biomedical Isotopes, Institute of Medicine, 1995. 144 p. https://doi.org/10.17226/4818

12. Bergmann H., Sinzinger H. Radioactive Isotopes in Clinical Medicine and Research. Basel, Rirkhäuser Verlag, 1995. 300 p. https://doi.org/10.1007/978-3-0348-7340-6

13. Thayer J. S. Relativistic Effects and the Chemistry of the Heavier Main Group Elements. Relativistic Methods of Chemists. Challenges and Advances in Computational Chemistry and Physics. N.-Y., Springer, 2010, vol. 10, pp. 63–97. https://doi.org/10.1007/978-1-4020-9975-5_2

14. de Laeter J. R., Böhlke J. K., Bièvre P. D., Hidaka H., Peiser H. S., Rosman K. J. R., Taylor P. D. P. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 2003, vol. 75, no. 6, pp. 683–800. https://doi.org/10.1351/pac200375060683

15. Harrison J., Leggett R., Lloyd D., Phipps A., Scott B. Polonium-210 as a Poison in London. Journal of Radiological Protection, 2007, vol. 27, no. 1, pp. 17–40. https://doi.org/10.1088/0952-4746/27/1/001

16. Audi G., Berscillon O., Blachot J., Wapstra A. H. The Nubase evaluation of nuclear and decay properties. Nuclear Physics A, 2003, vol. 729, no. 1, pp. 3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001

17. Goloviznin V. М., Kondratenko P.S., Matveev L.V., Korotkin I. А., Dranikov I.L. Abnormal diffusion of radionuclides in highly heterogeneous geological formations. Мoscow, Nauka Publ., 2010. 342 p. (in Russian).

18. Yeagle P. L. (ed.). The Structure of Biological Membrans. 3-th edit. CRC Press Book: Tailor and Frances Gr., 2011. 398 p. https://doi.org/10.1201/b11018

19. Giebisch G., Tosteson D. C., Ussing H. H. (eds.) Membrane Transport in Biology. Vol. 2. Transport Across Single Biological Membranes. Berlin, Heidelberg, N.-Y., Springer-Verlag, 1979. 444 p. https://doi.org/10.1007/978-3-642-46375-4

20. Ting G., Chang C.-H., Wang H.-E., Lee T.-W. Nanotargeted Radionuclides for Cancer Nuclear Imaging and Internal Radiotherapy. Journal of Biomedicine and Biotechnology, 2010, vol. 2010, Article ID 953537, pp. 1–17. https://doi.org/10.1155/2010/953537

21. Coenen H. H., Moerlein S. M., Stöckin G. No-Carrier-Added Radiohalogenation Methods with Heavy Halogens. Radiochimica Acta, 1983, vol. 34, no. 1–2, pp. 47–68. https://doi.org/10.1524/ract.1983.34.12.47

22. Sandler, S. I. Chemical, biochemical, and engineering thermodynamics. John Wiley & Sons., Inc., 2006. 760 p.

23. Demerel Y. Nonequilibrium thermodynamics: Transport and rate processes in physical, chemical and biological systems. 3rd ed. Amsterdam, Oxford, Elsevier Science, 2014. 792 p. https://doi.org/10.1016/C2012-0-00459-0

24. Mullin J. W. Crystallization. 4 th ed. Oxford, Boston, Johannesburg, Melburne, New Delhi, Singapoure, Butterworth Heinemann, 2001. https://doi.org/10.1016/B978-0-7506-4833-2.X5000-1

25. Dikusar E. A., Pushkarchuk A. L., Bezjazychnaja T. V., Soldatov A. G., Kuten S. A. Quantum chemical modeling of the molecular and electronic structures of the estron-containing bisfullerenol radionuclide cancer fghting agents. Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov: mezhvuz. sb. nauch. tr. [Physico-chemical aspects of the study of clusters, nanostructures and nanomaterials: interun. collection of scientifc papers]. Tver, Tver State University, 2016, iss. 8, pp. 110–118 (in Russian).


Review

Views: 754


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)