Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Пашыраны пошук

Прямая трансформация i-стероидных метиловых эфиров в 6-кетоны: использование в синтезе брассиностероидов

https://doi.org/10.29235/1561-8331-2019-55-2-175-181

Анатацыя

Разработан одностадийный метод трансформации 3α,5-цикло-6β-метиловых эфиров стероидов в соответствующие 3α,5-цикло-6-кетоны – ключевые интермедиаты в синтезе брассиностероидов под действием метил(трифторметил)диоксирана. Возможности метода продемонстрированы на примере получения биосинтетического предшественника брассинолида – 3-дегидротеастерона.

Аб аўтарах

А. Гурский
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


В. Жабинский
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


В. Хрипач
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь


Спіс літаратуры

1. Khripach, V. A. Brassinosteroids. A New Class of Plant Hormones / V. A. Khripach, V. N. Zhabinskii, A. de Groot. – San Diego, 1999. – 456 c. https://doi.org/10.1016/B978–0–12–406360–0.X5000-X

2. Synthesis of [26–2H3]brassinosteroids / V. A. Khripach [et al.] // Steroids. – 2002. – Vol. 67, No 7. – P. 587–595. https://doi.org/10.1016/S0039-128X(02)00004-1

3. Litvinovskaya, R. P. Synthesis of 28-homobrassinosteroids modifed in the 26-position / R. P. Litvinovskaya, M. E. Raiman, V. A. Khripach // Chem. Nat. Compd. – 2009. – Vol. 45, No 5. – P. 647–652. https://doi.org/10.1007/s10600-009-9439-2

4. Synthesis of deuterium-labeled (24R)-methyl brassinosteroids / V. A. Khripach [et al.] // J. Labelled Compd. Radiopharm. – 2011. – Vol. 54. – P. 332–336. https://doi.org/10.1002/jlcr.1874

5. Khripach, V. A. Synthesis of (22R,23R,24S)-24-methyl-5α-cholestane-3β,6α,22,23-tetraol, a biosynthetic precursor of brassinolide / V. A. Khripach, V. N. Zhabinskii, N. D. Pavlovskii // Russ. J. Org. Chem. – 2001. – Vol. 37, No 11. – P. 1570–1574. https://doi.org/10.1023/A:1013804119279

6. Hurski, A. A short convergent synthesis of the side chains of brassinolide, cathasterone, and cryptolide / A. Hurski, V. Zhabinskii, V. Khripach // Tetrahedron Lett. – 2013. – Vol. 54, No 6. – P. 584–586. https://doi.org/10.1016/j.tetlet.2012.11.094

7. 3-Oxoteasterone and the epimerization of teasterone – identifcation in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol / H. Abe [et al.] // Biosci. Biotechnol. Biochem. – 1994. – Vol. 58, No 5. – P. 986–989. https://doi.org/10.1271/bbb.58.986

8. Angyal, S. J. Oxidative demethylation with chromium trioxide in acetic acid / S. J. Angyal, K. James // Carbohydr. Res. – 1970. – Vol. 12, No 1. – P. 147–149. https://doi.org/10.1016/S0008-6215(00)80237-2

9. Catalytic processes of oxidation by hydrogen peroxide in the presence of Br2 or HBr / A. Amati [et al.] // Org. Process Res. Dev. – 1998. – Vol. 2, No 4. – P. 261–269. https://doi.org/10.1021/op980028j

10. Suzuki, H. Direct oxidation of methyl ethers to carbonyl compounds with a combination of nitrogen dioxide and water in the presence or absence of ozone / H. Suzuki, T. Takeuchi, T. Mori // Bull. Chem. Soc. Jpn. – 1997. – Vol. 70, No 12. – P. 3111–3115. https://doi.org/10.1246/bcsj.70.3111

11. Olah, G. A. Synthetic methods and reactions. 17. Uranium hexafluoride, a convenient new oxidizing agent for organic synthesis / G. A. Olah, J. Welch, T.-L. Ho // J. Am. Chem. Soc. – 1976. – Vol. 98, No 21. – P. 6717–6718. https://doi.org/10.1021/ja00437a059

12. Manganese terpyridine artifcial metalloenzymes for benzylic oxygenation and olefn epoxidation / C. Zhang [et al.] // Tetrahedron. – 2014. – Vol. 70, No 27. – P. 4245–4249. https://doi.org/10.1016/j.tet.2014.03.008

13. Olah, G. A. Cerium(IV) ammonium nitrate-catalyzed oxidative cleavage of alkyl and silyl ethers with sodium bromate / G. A. Olah , B. G. Gupta , A. P. Fung // Synthesis. – 1980, No 11. – P. 897–898. https://doi.org/10.1055/s-1980-29258

14. Gilissen, P. J. Oxidation of secondary methyl ethers to ketones / P. J. Gilissen, D. Blanco-Ania, F. P. J. T. Rutjes // J. Org. Chem. – 2017. – Vol. 82, No 13. – P. 6671–6679. https://doi.org/10.1021/acs.joc.7b00632

15. van Heerden, F. R. Direct transformation of steroidal ethers into ketones by dimethyldioxirane / F. R. van Heerden, J. T. Dixon, C. W. Holzapfel // Tetrahedron Lett. – 1992. – Vol. 33, N 48. – P. 7399–7402. https://doi.org/10.1016/S0040-4039(00)60199-5

16. Hurski, A. L. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors / A. L. Hurski, V. N. Zhabinskii, V. A. Khripach // Steroids. – 2012. – Vol. 77, No 7. – P. 780–790. https://doi.org/10.1016/j.steroids.2012.03.010

17. Aburatani, M. Facile syntheses of brassinosteroids: brassinolide, castasterone, teasterone and typhasterol / M. Aburatani, T. Takeuchi, K. Mori // Agric. Biol. Chem. – 1987. – Vol. 51, No 7. – P. 1909–1913. https://doi.org/10.1271/bbb1961.51.1909

18. Synthesis of secasterol and 24-episecasterol and their toxicity for MCF-7 cells / V. A. Khripach [et al.] // Russ. J. Bioorg. Chem. – 2010. – Vol. 36, No 6. – P. 746–754. https://doi.org/10.1134/S1068162010060117

19. 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain / T. Yokota [et al.] // Biosci. Biotechnol. Biochem. – 1994. – Vol. 58, No 6. – P. 1183–1185. https://doi.org/10.1271/bbb.58.1183

20. Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus / H. Suzuki [et al.] // Biosci. Biotechnol. Biochem. – 1994. – Vol. 58, No 6. – P. 1186–1188. https://doi.org/10.1271/bbb.58.1186


##reviewer.review.form##

Праглядаў: 730


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)