Direct transformation of i-steroid methyl ethers in 6-ketones: the use in the synthesis of brassinosteroids
https://doi.org/10.29235/1561-8331-2019-55-2-175-181
Abstract
A one-step method for the transformation of 3α,5-cyclo-6β-methyl ethers of steroids into the corresponding 3α,5-cyclo-6-ketones under the action of methyl (trifluoromethyl) dioxirane has been developed. The possibilities of the method have been demonstrated by preparing 3-dehydrotesterone, the biosynthetic precursor of brassinolide.
About the Authors
A. L. GurskiiBelarus
Alaksei L. Gurskii – Ph. D. (Chemistry), Leading researcher
5/2, Kuprevich Str., 220141, Minsk
V. N. Zhabinskii
Belarus
Vladimir N. Zhabinskii – Corresponding Member, D. Sc. (Chemistry), Associate Professor, Chief researcher
5/2, Kuprevich Str., 220141, Minsk
V. A. Khripach
Belarus
Vladimir A. Khripach – Academician, D. Sc. (Chemistry), Professor, Head of the Laboratory
5/2, Kuprevich Str., 220141, Minsk
References
1. Khripach V. A., Zhabinskii V. N., de Groot A. Brassinosteroids. A New Class of Plant Hormones. San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/B978-0-12-406360-0.X5000-X
2. Khripach V. A., Zhabinskii V. N., Konstantinova O. V., Antonchick A. P., Schneider B. Synthesis of [26–2H3] brassinosteroids. Steroids, 2002, vol. 67, no 7, pp. 587–595. https://doi.org/10.1016/S0039-128X(02)00004-1
3. Litvinovskaya R. P., Raiman M. E., Khripach V. A. Synthesis of 28-homobrassinosteroids modifed in the 26-position. Chemistry of Natural Compounds, 2009, vol. 45, no 5, pp. 647–652. https://doi.org/10.1007/s10600-009-9439-2
4. Khripach V. A., Zhabinskii V. N., Gulyakevich O. V., Ermolovich Y. V., Konstantinova O. V. Synthesis of deuteriumlabeled (24R)-methyl brassinosteroids. Journal of Labelled Compounds & Radiopharmaceuticals, 2011, vol. 54, pp. 332–336. https://doi.org/10.1002/jlcr.1874
5. Khripach V. A., Zhabinskii V. N., Pavlovskii N. D. Synthesis of (22R,23R,24S)-24-methyl-5α-cholestane-3β,6α,22,23-tetraol, a biosynthetic precursor of brassinolide. Russian Journal of Organic Chemistry, 2001, vol. 37, no 11, pp. 1570–1574. https://doi.org/10.1023/A:1013804119279
6. Hurski A., Zhabinskii V., Khripach V. A short convergent synthesis of the side chains of brassinolide, cathasterone, and cryptolide. Tetrahedron Letters, 2013, vol. 54, no 6, pp. 584–586. https://doi.org/10.1016/j.tetlet.2012.11.094
7. Abe H., Honjo C., Kyokawa Y., Asakawa S., Natsume M., Narushima M. 3-Oxoteasterone and the epimerization of teasterone – identifcation in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol. Bioscience, Biotechnology, and Biochemistry, 1994, vol. 58, no 5, pp. 986–989. https://doi.org/10.1271/bbb.58.986
8. Angyal S. J., James K. Oxidative demethylation with chromium trioxide in acetic acid. Carbohydrate Research, 1970, vol. 12, no 1, pp. 147–149. https://doi.org/10.1016/S0008-6215(00)80237-2
9. Amati A., Dosualdo G., Zhao L., Bravo A., Fontana F., Minisci F., Bjørsvik H.-R. Catalytic processes of oxidation by hydrogen peroxide in the presence of Br2 or HBr. Organic Process Research & Development, 1998, vol. 2, no 4, pp. 261–269. https://doi.org/10.1021/op980028j
10. Suzuki H., Takeuchi T., Mori T. Direct oxidation of methyl ethers to carbonyl compounds with a combination of nitrogen dioxide and water in the presence or absence of ozone. Bulletin of the Chemical Society of Japan, 1997, vol. 70, no 12, pp. 3111–3115. https://doi.org/10.1246/bcsj.70.3111
11. Olah G. A., Welch J., Ho T.-L. Synthetic methods and reactions. 17. Uranium hexafluoride, a convenient new oxidizing agent for organic synthesis. Journal of the American Chemical Society, 1976, vol. 98, no 21, pp. 6717–6718. https://doi.org/10.1021/ja00437a059
12. Zhang C., Srivastava P., Ellis-Guardiola K., Lewis J. C. Manganese terpyridine artifcial metalloenzymes for benzylic oxygenation and olefn epoxidation. Tetrahedron, 2014, vol. 70, no 27, pp. 4245–4249. https://doi.org/10.1016/j.tet.2014.03.008
13. Olah G. A., Gupta B. G., Fung A. P. Cerium(IV) ammonium nitrate-catalyzed oxidative cleavage of alkyl and silyl ethers with sodium bromate. Synthesis, 1980, no 11, pp. 897–898. https://doi.org/10.1055/s-1980-29258
14. Gilissen P. J., Blanco-Ania D., Rutjes F. P. J. T. Oxidation of secondary methyl ethers to ketones. The Journal of Organic Chemistry, 2017, vol. 82, no 13, pp. 6671–6679. https://doi.org/10.1021/acs.joc.7b00632
15. van Heerden F. R., Dixon J. T., Holzapfel C. W. Direct transformation of steroidal ethers into ketones by dimethyldioxirane. Tetrahedron Letters, 1992, vol. 33, no 48, pp. 7399–7402. https://doi.org/10.1016/S0040-4039(00)60199-5
16. Hurski A. L., Zhabinskii V. N., Khripach V. A. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors. Steroids, 2012, vol. 77, no 7, pp. 780–790. https://doi.org/10.1016/j.steroids.2012.03.010
17. Aburatani M., Takeuchi T., Mori K. Facile syntheses of brassinosteroids: brassinolide, castasterone, teasterone and typhasterol. Agricultural and Biological Chemistry, 1987, vol. 51, no 7, pp. 1909–1913. https://doi.org/10.1271/bbb1961.51.1909
18. Khripach V. A., Zhabinskii V. N., Gulyakevich O. V., Konstantinova O. V., Misharin A. Y., Mekhtiev A. R., Timofeev V. P., Tkachev Y. V. Synthesis of secasterol and 24-episecasterol and their toxicity for MCF-7 cells. Russian Journal of Bioorganic Chemistry, 2010, vol. 36, no 6, pp. 746–754. https://doi.org/10.1134/S1068162010060117
19. Yokota T., Nakayama M., Wakisaka T., Schmidt J., Adam G. 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience, Biotechnology, and Biochemistry, 1994, vol. 58, no 6, pp. 1183–1185. https://doi.org/10.1271/bbb.58.1183
20. Suzuki H., Inoue T., Fujioka S., Takatsuto S., Yanagisawa T., Yokota T., Murofushi N., Sakurai A. Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus. Bioscience, Biotechnology, and Biochemistry, 1994, vol. 58, no 6, pp. 1186–1188. https://doi.org/10.1271/bbb.58.1186