Hibrid biomaterials based on hydroxyapatite and blood components
https://doi.org/10.29235/1561-8331-2019-55-3-299-308
Abstract
Hybrid biomaterials based on amorphous hydroxyapatite and blood components (fibrin, citrate plasma) were developed by chemical precipitation of hydroxyapatite in a biopolymer matrix (pH 11; Ca/P ratio 1.67) and by mixing 6–14 wt.% of hydroxyapatite gel (pH 7.0–7.2) with bipolymers. Chemically precipitated hydroxyapatite in biopolymer matrices is single phase or contains ticalcium phosphate impurity up to 30 %, mainly α-modification in fibrin matrix and β-modification in citrate plasma. The interaction of hydroxyapatite gel into the fibrin leads to significant amorphization of hydroxyapatite and an increase in its bioresorbability. Holding the composites with hydroxyapatite obtained by chemical precipitation in the Simulated Body Fluid model solution for 75 days leads to their partial resorption and simultaneous increase of biomimetic apatite, with its greater weight gain on composites with a fibrin. Hybrid biomaterials based on a fibrin obtained from the patient’s blood and hydroxyapatite gel showed positive result during implantation, allowing to form an adequate configuration of the defect, expanding the possibilities of ENT surgery.
About the Authors
V. K. Krut’koBelarus
Valentina K. Krut’ko – Ph. D. (Chemistry), Associate professor, Leading researcher
9/1, Surganov Str., 220072, Minsk
R. A. Vlasov
Belarus
Roman A. Vlasov – ENT specialist
4, Zolotaya gorka Str, 220005, MinskO. N. Musskaya
Belarus
Olga N. Musskaya – Ph. D. (Chemistry), Associate professor, Senior researcher
9/1, Surganov Str., 220072, MinskI. E. Glazov
Belarus
Ilya E. Glazov – Junior researcher
9/1, Surganov Str., 220072, MinskA. I. Kulak
Belarus
Anatoly I. Kulak – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director
9/1, Surganov Str., 220072, Minsk
References
1. Turon P., Del Valle L. J., Alemán C., Puiggalí J. Review. Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Applied Sciences, 2017, vol. 7, no. 60. pp. 2–27. https://doi.org/10.3390/app7010060
2. Musskaya O. N., Krut’ko V. K., Shchemelyov A. V., Vlasov R. A. Application of “Hydroxyapatite gel” medication in medicine. Medicina = Medicine, 2015, no. 3, pp 70–74 (in Russian).
3. Krut’ko V. K., Kulak A. I., Lesnikovich L. A., Musskaya O. N., Trofimova I. V. Composite biomaterials and coatings based on nanocrystalline hydroxyapatite. Vesci Natsyonal’nai akademii navuk Belarusi. Serya chim. navuk = Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2008, no. 4, pp. 100–105 (in Russian).
4. Krut’ko V. K., Kulak A. I., Lesnikovich L. A., Trofimova I. V., Musskaya O. N., Zhavnerko G. K., Paribok I. V. Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel. Russian Journal of General Chemistry, 2007, vol. 77, no. 3, pp. 336−342. https://doi.org/10.1134/S1070363207030036
5. Tsuber V. K., Lesnikovich L. A., Kulak A. I., Trofimova I. V., Petrov P. T., Trukhacheva T. V., Kovalenko Yu. D., Krasil’nikova V. L. Synthesis, identification and determination of impurities in bioactive hydroxyapatite. Pharmaceutical Chemistry Journal, 2006, vol. 40, no. 80, pp. 455−458. https://doi.org/10.1007/s11094-006-0151-2
6. Musskaya O. N., Kulak A. I., Krut’ko V. K., Lesnikovich Yu. A., Kazbanov V. V., Zhitkova N. S. Preparation of bioactive mesoporous calcium phosphate granules. Inorganic Materials, 2018, vol. 54, no. 2, pp. 117−124. https://doi.org/10.1134/S0020168518020115
7. Krut’ko V. K., Kulak A. I., Musskaya O. N., Lesnikovich Yu. A. Synthetic hydroxyapatite – the basis of bone–substituting biomaterials. Sofia = Sofia, 2017, no. 1, pp. 50–57 (in Russian).
8. Krut’ko V. K., Kulak A. I., Musskaya O. N. Thermal transformations of composites based on hydroxyapatite and zirconia. Inorganic Materials, 2017, vol. 53, no. 4, pp. 429−436. https://doi.org/10.1134/S0020168517040094
9. Krut’ko V. K., Kulak A. I., Musskaya O. N., Safronova T. V., Putlaev V. I. Calcium phosphate foam ceramics based on hydroxyapatite-brushite powder mixture. Steklo i keramika = Glass and ceramics, 2019, no. 3, pp. 38–44 (in Russian).
10. Alarçin E., Lee T. Y. , Karuthedom S., Mohammadi M., Brennan M. A., Lee D. H., Marrella A., Zhang J., Syla D., Zhang Y. S., Khademhosseini A., Jang H. L. Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, vol. 6, no. 6. pp. 1604−1615. https://doi.org/10.1039/c8bm00293b
11. Noori A., Ashrafi S. J., Vaez-Ghaemi R., Hatamian-Zaremi A., Webster T. J. А review of fibrin and fibrin composites for bone tissue engineering. International journal of nanomedicine, 2017, vol. 12, pp. 4937–4961. https://doi.org/10.2147/IJN.S124671
12. Bagot d’Arc M., Daculsi G. Micro macroporous biphasic ceramics and fibrin sealant as a mouldable material for bone reconstruction in chronic otitis media surgery. A 15 years experience. Journal of Materials Science: Materials in Medicine, 2003, vol. 14, pp. 229–233. https://doi.org/10.1023/A:1022828606312
13. Abiraman S., Varma H.K., Umashankar P.R., Annie John. Fibrin glue as an osteoinductive protein in a mouse model. Biomaterials, 2002, vol. 23, pp. 3023–3031. https://doi.org/10.1016/S0142-9612(02)00064-9
14. Le Nihouannen D., Guehennec L.L., Rouillon T., Pilet P., Bilban M., Layrolle P., Daculsi G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials, 2006, vol. 27, pp. 2716– 2722. https://doi.org/10.1016/j.biomaterials.2005.11.038
15. Le Guehennec L., Goyenvalle E., Aguado E., Pilet P., Bagot D’Arc M., Bilban M., Spaethe R., Daculsi G. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth. Journal of Materials Science: Materials in Medicine, 2005, vol. 16, no. 1, pp. 29–35. https://doi.org/10.1007/s10856-005-6443-3
16. Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials, 2009, vol. 30, no. 28, pp. 4956– 4966. https://doi.org/10.1016/j.biomaterials.2009.05.055
17. Mozzati M., Martinasso G., Pol R., Polastri C., Cristiano A., Muzio G., Canuto R. The impact of plasma rich in growth factors on clinical and biological factors involved in healing processes after third molar extraction. Journal of Biomedical Materials Research Part A, 2010, vol. 95, no. 3, pp. 741–746. https://doi.org/10.1002/jbm.a.32882
18. Jalota S., Bhaduri S.B., Tas A. C. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. Journal of Materials Science: Materials in Medicine, 2006, vol. 17, no. 8, pp. 697–707. https://doi.org/10.1007/s10856-006-9680-1
19. Vlasov R. A, Mel’nik V. F., Merkulova E. P., Krut’ko V. K., Musskaya O. N., Kulak A I., Lesnikovich L. A., Ulasevich S. A. Application of composite materials on the basis of fibrin and hydrogel of hydroxyapatite for rhinoseptoplasty. Otorinolaringologija. Vostochnaja Evropa = Otorhinolaryngology. Eastern Europe, 2013, vol. 12, no. 3, pp. 29–32 (in Russian).
20. Vlasov R. A., Krut’ko V. K., Mel’nik V. F., Kulak A. I., Musskaya O. N., Moskaleva N. V. Non-specific resistance of epithelial cells to hydroxyapatite. Otorinolaringologija. Vostochnaja Evropa = Otorhinolaryngology. Eastern Europe, 2016, vol. 6, no. 4, pp. 579–586 (in Russian).