Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Ibuprofen oxidative degradation in the presence of Fenton-catalyst based on MgFe2O4 nanoparticles

https://doi.org/10.29235/1561-8331-2019-55-3-345-351

Abstract

Catalytic properties of MgFe2O4 nanoparticles during oxidative destruction of non-steroidal anti-inflammatory drug ibuprofen were studied. The influence of the conditions of the catalytic process on the efficiency of ibuprofen decomposition was established. It was shown that at the catalyst content of 0.5 g/L, H2O2 concentration of 20.0 mmol/L and pH of 6.0 for 40 min, a decrease in the ibuprofen concentration from 10.0 mg/L to less than detected limit is achieved. It was found that in the process of catalytic destruction the degree of ibuprofen mineralization reached 100 %. The conducted research shows the prospects of practical application of the developed Fenton-like heterogeneous catalyst for wastewater treatment from pharmaceutically active compounds.

About the Authors

A. I. Ivanets
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Andrei I. Ivanets – D. Sc. (Chemistry) Associate Professor, Leading Researcher

9/1, Surganov Str., 220072, Minsk


M. Yu. Roshchina
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Marina Yu. Roshchina – Junior researcher

9/1, Surganov Str., 220072, Minsk


V. G. Prozorovich
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vladimir G. Prozorovich – Researcher

9/1, Surganov Str., 220072, Minsk


References

1. Sumpter J. Pharmaceuticals in the Environment: Moving from a Problem to a Solution. Green and Sustainable Pharmacy. Berlin, Springer-Verlag, 2010б pp. 11–22. https://doi.org/10.1007/978-3-642-05199-9_2

2. Der Beek T. A., Weber F. A., Bergmann A., Hickmann S., Ebert I., Hein A., Küster A. A. Pharmaceuticals in the environment – Global Occurrences and Perspective. Environmental Toxicology and Chemistry, 2016, vol. 35, no. 4, pp. 823–835. https://doi.org/10.1002/etc.3339

3. Ratola N., Cincinelli A., Alves A., Katsoyiannis A. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 2012, vol. 239–240, pp. 1–18. https://doi.org/10.1016/j.jhazmat.2012.05.040

4. Yoon Y., Westerhoff P., Snyder S. A., Wert E. C., Yoon J. Removal of endocrine disrupting compounds and phar- maceuticals by nanofiltration and ultrafiltration membranes. Desalination, 2007, vol. 202, no. 1–3, pp. 16–23. https://doi.org/10.1016/j.desal.2005.12.033

5. Boxall A. The environmental side effects of medication. European Molecular Biology Organization, 2004, vol. 5, no. 12, pp. 1110–1116. https://doi.org/10.1038/sj.embor.7400307

6. Hignite C., Azarnoff D. L. Drugs and Drug Metabolites as Environmental Contaminants: Chlorophenoxyisobutyrate and Salicylic Acid in Sewage Water Effluent. Life Sciences, 1977, vol. 20, no. 2, pp. 337–341. https://doi.org/10.1016/0024-3205(77)90329-0

7. Kummerer K. Antibiotics in the aquatic environment a review part I. Chemosphere, 2009, vol. 75, no. 4, pp. 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

8. Daigle J. Acute responses of freshwater and marine species to ethyl estradiol and fluoxetine: MSc Thesis. USA: Louisiana State University, 2010.

9. Lucas D., Castellet-Rovira F., Villagrasa M., Badia-Fabregat M., Barceló D., Vicent T., Caminal G., Sarrà M., Rodríguez-Mozaz S. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of The Total Environment, 2018, vol. 610–611, pp. 1147–1153. https://doi.org/10.1016/j.scitotenv.2017.08.118

10. Cai Zh., Dwivedi A.D., Lee W.-N., Zhao X., Liu W., Sillanpää M., Zhao D., Huang Ch.-H, Fu J. Application of nano technologies for removing pharmaceutically active compounds in water: Development and future trends. Environmental Science: Nano, 2017, vol. 5, no 1, pp. 1–22. https://doi.org/10.1039/c7en00644f

11. Enami S., Sakamoto Y., Colussi A. J. Fenton chemistry at aqueous interfaces. Proceedings of the National Academy of Sciences, 2014, vol. 111, no. 2, pp. 623–628. https://doi.org/10.1073/pnas.1314885111

12. Blanco M., Martinez A., Marcaide A., Aranzabe E., Aranzabe A. Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water. American Journal of Analytical Chemistry, 2014, vol. 05, no. 08, pp. 490–496. https://doi.org/10.4236/ajac.2014.58058

13. Xu L., Wang J. Fenton-like degradation of 2,4-dichlorophenol using Fe 3 O 4 magnetic nanoparticles. Applied Catalysis B: Environmental, 2012, vol. 123–124, pp. 117–126. https://doi.org/10.1016/j.apcatb.2012.04.028

14. Guo L., Chen F., Fan X., Cai W., Zhang J. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol. Applied Catalysis B: Environmental, 2010, vol. 96, no. 1–2, pp. 162–168. https://doi.org/10.1016/j.apcatb.2010.02.015

15. Mesquita A. M., Guimarães I. R., de Castro G. M., Gonçalves M. A., Ramalho T. C., Guerreiro M. C. Boron as a promoter in the goethite (α-FeOOH) phase: Organic compound degradation by Fenton reaction. Applied Catalysis B: Environmental, 2016, vol. 192, pp. 286–295. https://doi.org/10.1016/j.apcatb.2016.03.051

16. Pouran S. R., Raman A. A. A., Daud W. M. A. W. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 2014, vol. 64, pp. 24–35. https://doi.org/10.1016/j.jcle-pro.2013.09.013

17. Wang Y., Zhao H., Li M., Fan J., Zhao G. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Applied Catalysis B: Environmental, 2014, vol. 147, pp. 534–545. https://doi.org/10.1016/j.apcatb.2013.09.017

18. Ivanets A. I., Srivastava V., Roshchina M. Y., Sillanpää M., Prozorovich V. G., Pankov V. V. Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn 2+ , Co 2+ , Ni 2+ and Cu 2+ from aqueous solution. Ceramics International, 2018, vol. 44, no. 8, pp. 9097–9104. https://doi.org/10.1016/j.ceramint.2018.02.117

19. Ivanets A. I., Roshchina M. Y., Srivastava V., Prozorovich V. G., Dontsova T., Nahirniak S., Pankov V. V., Hosseini-Bandegharaei A., Tran H. N., Sillanpää M. Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe 2 O 4 as Fenton-like catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, vol. 571, pp. 17–26. https://doi.org/10.1016/j.colsurfa.2019.03.071

20. Thommes M., Kaneko K., Neimark A.V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, vol. 87, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

21. Davarnejad R., Soofi B., Farghadani F., Behfar R. Ibuprofen removal from a medicinal effluent: A review on the various techniques for medicinal effluents treatment. Environmental Technology & Innovation, 2018, vol. 11, pp. 308–320. https://doi.org/10.1016/j.eti.2018.06.011

22. Jallouli N., Pastrana-Martínez L. M., Ribeiro A. R., Moreira N. F. F., Faria J. L., Hentati O., Silva A. M. T., Ksibi M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO 2 /UV-LED system. Chemical Engineering Journal, 2018, vol. 334, pp. 976–984. https://doi.org/10.1016/j.cej.2017.10.045

23. Matzek L. W., Carter K. E. Activated persulfate for organic chemical degradation: A review. Chemosphere, 2016, vol. 151, pp. 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

24. Wang Zh., Srivastava V., Ambat I., Safaei Z., Sillanpää M. Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process. Journal of Water Process Engineering, 2019, vol. 31, pp. 100808. https://doi.org/10.1016/j.jwpe.2019.100808

25. Lin L., Jiang W., Bechelany M., Nasr M., Jarvis J., Schaub T., Sapkota R. R., Miele Ph., Wang H., Xu P. Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO 2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere, 2019, vol. 220, pp. 921–929. https://doi.org/10.1016/j.chemosphere.2018.12.184


Review

Views: 1199


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)