Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Wet synthesis of carbonated hydroxyapatite

https://doi.org/10.29235/1561-8331-2019-55-4-391-399

Abstract

Carbonated hydroxyapatite of predominant B-type of substitution has been synthesized at various temperatures, carbonate concentrations and time of immersion in mother solution. Carbonated hydroxyapatite synthesized at 80 °C contains the largest amount (up to 9 wt.%) of calcite impurity and has a low specific surface area (40 m2/g). Lowering the synthesis temperature to 20 °C leads to a slight decrease in the content of calcite impurity (up to 5–7 wt.%) and an increase in the specific surface up to 125 m2/g. The introduction of the maturation stage for carbonated hydroxyapatite precipitated at 20 °C for 4 days suppresses the calcite impurity formation and leads to the increase in the specific surface up to 155 m2/g.

About the Authors

I. E. Glazov
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Ilya E. Glazov – Junior Researcher. 

9/1, Surganova Str., 220072, Minsk



V. K. Krut’ko
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Valentina K. Krut’ko – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory.

9/1, Surganova Str., 220072, Minsk



O. N. Musskaya
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Olga N. Musskaya – Ph. D. (Chemistry), Associate Professor, Senior Researcher.

9/1, Surganova Str., 220072, Minsk



A. I. Kulak
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Russian Federation

Anatoly I. Kulak – Corresponding Member, D. Sc. (Chemistry), Professor, Director.

9/1, Surganova Str., 220072, Minsk

 



References

1. Bohner M., Galea L., Doebelin N. Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society 2012, vol. 32, no. 11, pp. 2663–2671. https://doi.org/10.1016/j.jeurceramsoc.2012.02.028

2. Tsuber V. K., Lesnikovich L. A., Kulak A. I., Trofimova I. V., Petrov P. T., Trukhacheva T. V., Kovalenko Yu. D., Krasil’nikova V. L. Synthesis, identification and determination of impurities in bioactive hydroxyapatite. Pharmaceutical Chemistry Journal, 2006, vol. 40, no. 80, pp. 455–458. https://doi.org/10.1007/s11094-006-0151-2

3. Musskaya O. N., Kulak A. I., Krut’ko V. K., Lesnikovich Yu. A., Kazbanov V. V., Zhitkova N. S. Preparation of Bioactive Mesoporous Calcium Phosphate Granules. Inorganic Materials, 2018, vol. 54, no. 2, pp. 117–124. https://doi.org/10.1134/S0020168518020115

4. Musskaya O. N., Kulak A. I., Krut’ko V. K., Glazov I. E. Adsorption-structural properties of calcium phosphates xerogels obtained by liquid-phase synthesis. Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov = Physical chemical aspects of clusters, nanostructures and nanomaterials study, 2018, vol. 10, pp. 468–477 (in Russian).

5. Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J. M. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polymer degradation and stability, 2010, vol. 95, no. 11, pp. 2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007

6. LeGeros R. Z., Lin S., Rohanizadeh R., Mijare D., LeGeros J. P. Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of materials science: materials in medicine, 2003, vol. 14, no. 3, pp. 201–209. https://doi.org/10.1023/A:1022872421333

7. Lafon J. P., Champion E., Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x (OH)2−x−2y(CO3)y ceramics with controlled composition. Journal of the European Ceramic Society, 2008, vol. 28, no. 1, pp. 139–147. https://doi.org/10.1016/j.jeurceramsoc.2007.06.009

8. White A. A., Best S. M., Kinloch I. A. Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 2007, vol. 4, no. 1, pp. 1–13. https://doi.org/10.1111/j.1744-7402.2007.02113.x

9. Krut’ko V. K., Kulak A. I., Musskaya O. N. Thermal Transformations of Composites Based on Hydroxyapatite and Zirconia. Inorganic Materials, 2017, vol. 53, no. 4, pp. 429–436. https://doi.org/10.1134/S0020168517040094

10. Musskaya, O. N., Krut’ko V. K., Kulak A. I., Lesnikovich Yu. A. Сomposite films based on polyvinyl alcohol and hydroxyapatite. Polymer materials and technologies, 2017, vol. 3, no. 2, pp. 28–33 (in Russian). https://doi.org/10.32864/polymmattech-2017-3-2-28-33

11. Glazov I. E., Vlasov R. A., Krut’ko V. K., Musskaya O. N. Synthesis of composite materials based on calcium phosphates and blood components. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 2, pp. 135–141 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-2-135-141

12. Aoki H. Outline of hydroxyapatite. Science and Medical Applications of Hydroxyapatite. Tokyo: JAAS, 1991, pp. 1–10.

13. Golovanova O. A., Gerk S. A., Kuriganova A. N., Izmaylov R. R. Correlation dependences between phase, elemental and amino acid composition of physiogenic and pathogenic OMA and their synthetic analogues. Sistemy. Metody. Tehnologii = Systems. Methods. Technologies, 2012, no. 4, pp. 131–139 (in Russian).

14. Germaini M. M., Detsch R., Grünewald A., Magnaudeix A., Lalloue F., Boccaccini A. R., Champion E. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomedical Materials, 2017, vol. 12, no. 3, pp. 035008. https://doi.org/10.1088/1748-605X/aa69c3/meta

15. Sun R., Yang L., Zhang Y., Chu F., Wang G., Ly Yu., Chen K. Novel synthesis of AB-type carbonated hydroxyapatite hierarchical microstructures with sustained drug delivery properties. CrystEngComm, 2016, vol. 18, no. 41, pp. 8030–8037. https://doi.org/10.1039/C6CE01494A

16. Garskaite E., Gross K.-A., Yang S.-W., Yang T. Ch.-K., Yang J.-C., Kareira A. Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm, 2014, vol. 16, no 19, pp. 3950–3959. https://doi.org/10.1039/C4CE00119B

17. Kovaleva E. S., Shabanov M. P., Putlayev V. I., Filippov Ya. Yu., Tretyakov Y. D., Ivanov V. K Bioresorbable powder materials based on Ca10–xNax(PO4)6–x(CO3)x(OH)2. Uchonye zapisky Kazanskogo universiteta = Scientific notes of the Kazan University, 2010, vol. 152, no. 1. – pp. 79–98 (in Russian).

18. Landi E., Celotti G., Logroscino G., Tampieri A. Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramical Society, 2003, vol. 23, no. 15, pp. 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304

19. Gibson I. R., Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical Materials Research, 2002, vol. 59, no. 4, pp. 697–708. https://doi.org/10.1002/jbm.10044

20. Gibson I. R., Rehman I., Best S. M., Bonfield W. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. Journal of materials science: materials in medicine, 2000, vol. 11, no. 9, pp. 533–539. https://doi.org/10.1023/A:100896181620821

21. Wong W. Y., Noor A. F. M. Synthesis and sintering-wet carbonation of nano-sized carbonated hydroxyapatite. Procedia Chemistry, 2016, vol. 19, pp. 98–105. https://doi.org/10.1016/j.proche.2016.03.121

22. Witoon T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International, 2011, vol. 37, no. 8, pp. 3291–3298. https://doi.org/10.1016/j.ceramint.2011.05.125


Review

Views: 713


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)