Peculiarities of sulfur dioxide sorption from air by weak base anion exchangers
https://doi.org/10.29235/1561-8331-2020-56-3-263-270
Abstract
Using non-empirical quantum-chemical calculations (with the density functional theory of DFT/B3LY-P/6-31G(3d,p) level) the geometric characteristics of sorption complexes of sulfur dioxide with primary, secondary and ternary amino groups of anion exchangers, synthesized by amination of nitrile groups of polyacrylonitrile fiber with the ethylenediamine or dimethylaminopropylamine, were calculated and their structures are visualized. The main regularities of SO2 sorption from air and features of the ongoing interactions in the polymer phase are established: 1) SO2 with primary and secondary amino groups of anion exchanger mainly interacts with the water molecules and practically does not form direct bonds with the nitrogen of the functional groups; the introduction of an oxygen molecule does not change the state of the system; 2) in the phase of anion exchanger with ternary amino groups, SO2, interacting with water molecules, spontaneously transforms into a hydrosulfite ions with proton transfer to ternary nitrogen; in the presence of an oxygen molecule in the system, barrier-free formation of the peroxy acid anion (SO3OO2-) occurs with the possible further oxidation of hydrosulfite to hydrosulfate.
Keywords
About the Authors
E. G. KosandrovichBelarus
Evgenii G. Kasandrovich - Ph. D. (Chemistry), Associate Professor, Head of the Laboratory.
13, Surganov Str., 220072, Minsk
A. L. Pushkarchuk
Belarus
Aleksandr L. Pushkarchuk - Ph. D. (Physics-mathematics), Senior Researcher.
13, Surganov Str., 220072, MinskT. V. Bezyazychnaya
Belarus
Tatiana V. Bezyazychnaya - Ph. D. (Physics-mathematics), Senior Researcher.
13, Surganov Str., 220072, MinskV. S. Soldatov
Belarus
Vladimir S. Soldatov - Academician, D. Sc. (Chemistry), Professor, Senior Researcher.
13, Surganov Str., 220072, Minsk
References
1. Soldatov V. S., Elinson I. S., Shunkevich A. A. Application of fibrous ion exchangers in air purification from acidic impurities. Hydrometallurgy’94. Dordrecht, Springer Publ., 1994, pp. 837-855. https://doi.org/10.1007/978-94-011-1214-7_57
2. Soldatov V. S., Elinson I. S., Shunkevich A. A., Pawlowski L., Wasag H. Air pollution control with fibrous ion exchangers. Chemistry for the protection of the environment. New York, London, Plenum Press Publ., 1996, vol. 2, pp. 55-66. https://doi.org/10.1007/978-1-4613-0405-0_7
3. Chikin G. A., Miagkoi O. N. Ion exchangers in the gas sorption technologies. Ion exchange methods of substances purification. Voronezh, VGU Publ., 1984, pp. 326-367 (in Russian).
4. Soldatov V. S., Kosandrovich E. G. Ion exchangers for air purification. Ion exchange and solvent extraction, A series of advances. USA, CRC Press Taylor and Francis Group Publ., 2011, vol. 20, pp. 45-117. https://doi.org/10.1201/b10813-3
5. Kosandrovich E. G., Doroshkevich O. N. Fibrous amino carboxylic sorbent for air purification from sulfur dioxide. Vestsi Natsyyanal ’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2014, no. 1, pp. 91-95 (in Russian).
6. Kosandrovich E. G., Yakubel O. N., Nesteronok P. V., Shachenkova L. N., Soldatov V. S.Catalytic preparation method and sorption properties of the fibrous anion exchanger with ternary amino groups. Vestsi Natsyyanal ’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2017, no. 1, pp. 82-88(in Russian).
7. Kosandrovich E. G., Shachenkova L. N., Soldatov V. S. Sorption of acetic acid vapors from air by fibrous anion exchangers with ternary and quaternary amino groups. Doklady Natsional’noy akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2019, vol. 63, no. 5, pp. 548-553 (in Russian). https://doi.org/10.29235/1561-8323-2019-63-5-548-553
8. Kosandrovich E. G., Soldatov V. S. Sorption of ammonia from air by fibrous sulfostyrene cation exchanger FIBAN K-1. Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2004, no. 3, pp. 95-98 (in Russian).
9. Granovsky Alex A. Firefly version 8. Available at: www http://classic.chem.msu.su/gran/firefly/index.html (accessed 05 April 2020).
10. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki Shiro, Matsunaga Nikita, Nguyen K. A., Su Shujun, Windus T. L., Dupuis M., Montgomery J. A. Jr. General atomic and molecular electronic structure system. Journal of Computational Chemistry, 1993, vol. 14, iss. 11, pp. 1347-1363. https://doi.org/10.1002/jcc.54014nf2
11. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 1993, vol. 98, iss. 7, pp. 5648-5652. https://doi.org/10.1063/L464913
12. Chengteh Lee, Weitao Yang, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 1988, vol. 37, iss. 2, pp. 785-789. https://doi.org/10.1103/physrevb.37.785
13. Makrlik E., Toman P., Vanura P. A combined experimental and DFT study on the complexation of Mg2+ with beau-vericin E. Structural Chemistry, 2012, vol. 23, iss. 3, pp. 765-769. https://doi.org/10.1007/s11224-011-9923-8
14. Jiamei Liu Fang, Wang Zhen Li, Jianwei Zhou, Jing Chen, Chungu Xia. Novel guanidinium zwitterion and derived ionic liquids: physicochemical properties and DFT theoretical studies. Structural Chemistry, 2011, vol. 22, iss. 5, pp. 1119-1130. https://doi.org/10.1007/s11224-011-9807-y
15. Clark T., Chandrasekhar Jayaraman, Spitznagel G. W., Schleyer P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. Journal of Computational Chemistry, 1983, vol. 4, iss. 3, pp. 294-301. https://doi.org/10.1002/jcc.540040303
16. Hehre W. J., Ditchfield R., Pople J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaus-sian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, 1972, vol. 56, iss. 5, pp. 2257-2261. https://doi.org/10.1063/L1677527
17. Hariharan P. C., Pople J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theore-tica chimica acta, 1973, vol. 28, iss. 3, pp. 213-222. https://doi.org/10.1007/bf00533485
18. Siggia S., Hanna J. G. Quantitative organic analysis via functional groups. Wiley and Sons, Inc. New York, 1954. 227 p.
19. Majumdar D., Kim K. S., Kim J., Oh K. S., Jung L., Choi W., Lee S. H., Kang M. H., Mhin B. J. Ab initio investigations on the HOSO2+O2→SO3+HO2 reaction. Journal of Chemical Physics, 2000, vol. 112, no. 2, pp. 723-730. https://doi. org/10.1063/1.480605
20. Tuktarova A. I., Baraeva L. R., Sabakhova G. I., Yusupova A. A., Akhmetova R. T. Quantum chemical investigation of non-catalytic sulfur dioxide oxidation. Vestnik tekhnologicheskogo universiteta = Bulletin of technological university. 2018, vol. 21, no 9, pp. 32-37 (in Russian).
21. Khoma R. E. Modelling of equilibrium processes in the systems “SO2-R2NCH2CH2NR2-H2O”. Sbornik nauchnikh statei III mezhdunarodnoi nauchno-prakticheskoy konferentsii "Komp'uterne modeliuvannia v khimii, tekhnologiyakh i siste-makh stalogo rozvitku KMKhT-2012” (Kiiv, Rubizhne, 10-12 travnia, 2012) = [Proceedings of III Int. sci.-pract. conf. “Computer modelling in chemistry, technology and high development systems” (Kiev, Rubizhne, 10-12 March 2012)]. Rubizhne, NTUU “KPI” Publ., 2012, pp. 27-30.