Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Enzyme immunoassay systems and a reagent kit for the determination of bacitracin in foods

https://doi.org/10.29235/1561-8331-2020-56-3-318-332

Abstract

Two test-systems for a direct and an indirect enzyme-linked immunosorbent assay (ELISA) of peptide antibiotic bacitracin (BC) were developed and studied. For the both systems, polyclonal antibodies were obtained by immunizing rabbits with a conjugate of BC with keyhole limpet hemocyanine synthesized using reaction between the peptide and the high molecular weight protein in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The product of BC linking to thyroglobulin which was activated with EDC and N-hydroxysulfosuccinimide served as conjugated antigen on a solid phase in the indirect ELISA. For the direct ELISA, the antibodies against BC were immunochemically immobilized onto microplate surface, while the liquid phase contained a conjugate of BC with horseradish peroxidase. This conjugate was obtained by successive reactions of antibiotic amino groups coupling to periodate oxidized carbohydrate chains of enzyme and the reducting of formed Shiff’s base with sodium borohydride. Conjugated antigens binding to anti-BC antibodies provided maximum colorimetric signals of 2.0 and 1.2 optical units for the direct and indirect ELISA, respectively, and depended on BC content in the liquid phase. Antibiotic concentration that caused the inhibition of binding by 50 % was 2.6 ng/ml in the direct ELISA and 10.0 ng/ml in the indirect ELISA. The simple and sensitive direct ELISA system was used as a prototype of the finished reagent kit and a method for measurements with technical-analytical parameters and metrological characteristics allowing the determination of BC residues in a variety of foods including 14 items in a concentration range of 9.0 to 405.0 pg/kg with proper accuracy and precision.

About the Authors

I. I. Vashkevich
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Irina I. Vashkevich - Ph. D. (Chemistry), Leading Researcher.

5/2, Academician Kuprevich Str., 220141, Minsk


A. A. Yastrebova
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Anna A. Yastrebova - Researcher.

5/2, Academician Kuprevich Str., 220141, Minsk


O. S. Kuprienko
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Olga S. Kuprienko - Ph. D. (Chemistry), Senior Researcher.

5/2, Academician Kuprevich Str., 220141, Minsk


T. S. Serchenya
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Tatyana S. Serchenya - Ph. D. (Chemistry), Leading Researcher.

5/2, Academician Kupre-vich Str., 220141, Minsk


M. V. Ivan’ko
Institute of Meat and Dairy Industry
Russian Federation

Mariya V. Ivan’ko - Junior Researcher.

172, Partizansky Ave., 220075, Minsk


V. O. Shkinderova
Institute of Meat and Dairy Industry
Russian Federation

Valeriya O. Shkinderova - Microbiologist Engineer.

172, Partizansky Ave., 220075, Minsk


I. P. Pyzhik
Institute of Meat and Dairy Industry
Russian Federation

Inessa P. Pyzhik - Head of the Sector.

172, Partizansky Ave., 220075, Minsk


T. M. Smolyak
Institute of Meat and Dairy Industry
Russian Federation

Tatyana M. Smolyak - Head of the Laboratory.

172, Partizansky Ave., 220075, Minsk


A. V. Meleshchenya
Institute of Meat and Dairy Industry
Russian Federation

Alexey V. Meleshchenya - Ph. D. (Economics), director.

172, Partizansky Ave., 220075, Minsk



O. V. Sviridov
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus
Russian Federation

Oleg V Sviridov - D. Sc. (Chemistry), Head of the Laboratory.

5/2, Academician Kuprevich Str., 220141, Minsk



References

1. Johnson B. A., Anker H., Meleney F. L. Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science, 1945, vol. 102, no. 2650, pp. 376-377. https://doi.org/10.1126/science.102.2650.376

2. Klyonova I. F., Yaryomenko N. A. Veterinary preparations in Russia. Moscow, Sel’khozizdat Publ., 2001. 543 p (in Russian).

3. Siegel M. M., Huang J., Lin B., Tsao R., Edmonds C. G. Structures of bacitracin A and isolated congeners: Sequencing of cyclic peptides with blocked linear side chains by electrospray ionization mass spectrometry. Biological Mass Spectrometry, 1994, vol. 23, no. 4, pp. 186-204. https://doi.org/10.1002/bms.1200230403

4. Scogin D. A., Mosberg H. I., Storm D. R., Gennis R. B. Binding of nickel and zinc ions to bacitracin A. Biochemistry, 1980, vol. 19, no. 14, pp. 3348-3352. https://doi.org/10.1021/bi00555a038

5. Ming L.-J., Epperson J. D. Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. Journal of Inorganic Biochemistry, 2002, vol. 91, no. 1, pp. 46-58. https://doi.org/10.1016/s0162-0134(02)00464-6

6. Pfeffer S., Hohne W., Branner S., Wilson K., Betzel C. X-Ray structure of the antibiotic bacitracin A. FEBS Letters, 1991, vol. 285, no. 1, pp. 115-119. https://doi.org/10.1016/0014-5793(91)80738-O

7. Tai H.-H. Composition of, method ofproducing and method of using a stabilized formulation for assaying peroxide activity. Patent US no. 5206150. Publ. date 27 April 1993.

8. Ika Y., Oka H., Hayakawa J., Matsumoto M., Saito M., Harada K.-I., Mayumi T., Suzuki M. Total structures and antimicrobial activity of bacitracin minor components. Journal of Antibiotics, 1995, vol. 48, no. 3, pp. 233-242. https://doi.org/10.7164/antibiotics.48.233

9. Pavli V., Kmetec V. Fast separation of bacitracin on monolithic silica columns. Journal of Pharmaceutical and Biomedical Analysis, 2004, vol. 36, no. 2, pp. 257-264. https://doi.org/10.1016/jjpba.2004.06.028

10. Pavli V., Kmetec V. Pathways of Chemical Degradation of Polypeptide Antibiotic Bacitracin. Biological and Pharmaceutical Bulletin, 2006, vol. 29, no. 11, pp. 2160-2167. https://doi.org/10.1016/jjpba.2004.06.028

11. Sin D. W., Wong Y. Analytical methodologies for identifying a polypeptide antibiotic. TrAC Trends in Analytical Chemistry, 2003, vol. 22, no. 11, pp. 799-809. https://doi.org/10.1016/S0165-9936(03)01204-4

12. Darker G. D., Brown H. B., Free A. H., Biro B., Goorley J. T., Free A. H. The assay of bacitracin. Journal of the American Pharmaceutical Association (Scientific ed.), 1948, vol. 37, no. 4, pp. 156-160. https://doi.org/10.1002/jps.3030370409

13. Suleiman S. A., Song F., Su M., Hang T., Song M. Analysis of bacitracin and its related substances by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical Analysis, 2017, vol. 7, no. 1, pp. 48-55. https://doi.org/10.1016/j.jpha.2016.06.001

14. Sarri A. K., Megoulas N. C., Koupparis M. A. Development of a novel liquid chromatography — Evaporative light scattering detection method for bacitracins and applications to quality control of pharmaceuticals. Analytica Chimica Acta, 2006, vol. 573-574, pp. 250-257. https://doi.org/10.1016/j.aca.2006.05.042

15. Capitan-Vallvey L. F., Titos A., Checa R., Navas N. High-performance liquid chromatography determination of Zn-bacitracin in animal feed by post-column derivatization fluorescence detection. Journal of Chromatography A, 2002, vol. 943, no. 2, pp. 227-234. https://doi.org/10.1016/s0021-9673(01)01442-x

16. Gallagher J. B., Love P. W., Knotts L. L. High pressure liquid chromatographic determination of bacitracin in premix feeds and finished feeds: collaborative study. Journal of the Association of Official Analytical Chemists (USA), 1982, vol. 65, no. 5, pp. 1178-1185. https://doi.org/10.1093/jaoac/65.5.1178_

17. Sin D. W., Clare H., Wong Y.-C., Ho S.-K., Ip A. C. Analysis of major components of residual bacitracin and colis-tin in food samples by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 2005, vol. 535, no. 1-2, pp. 23-31. https://doi.org/10.1016/j.aca.2004.11.063.

18. Situ C., Elliott C. T. Simultaneous and rapid detection of five banned antibiotic growth promoters by immunoassay. Analytica Chimica Acta, 2005, vol. 529, no. 1-2, pp. 89-96. https://doi.org/10.1016/j.aca.2004.08.013

19. Matsumoto M., Tsunematsu K., Tsuji A., Kido Y. Enzyme immunoassay using peroxidase as a label and a dip-strip test for monitoring residual bacitracin in chicken plasma. Analytica Chimica Acta, 1997, vol. 346, no. 2, pp. 207-213. https://doi.org/10.1016/S0003-2670(97)00110-4

20. Kononenko G. P., Burkin A. A. Methods of sanitary surveillance for livestock production. Communications II. Enzyme immunoassay (eia) of bacitracin. Sel ’skokhozyaystvennaya biologiya = Agricultural Biology, 2010, no. 6, pp. 88-93 (in Russian).

21. Williams C., Patel I., Willer C. J., Crosby N. T. Competitive enzyme-linked immunosorbent assay for the determination of zinc bacitracin in animal feedingstuffs. Analyst, 1994, vol. 119, no. 3, pp. 427-430. https://doi.org/10.1039/an9941900427

22. Serchenya T. S., Byzova N. A., Vashkevich I. I., Zherdev A. V., Dzantiev B. B., Sviridov O. V. An immunochromatografic rapid test for the detection of polypeptide antibiotic bacitracin in milk. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Belorusskie lekarstva» [International Scientific and Practical Conference «Belarusian Medicines»]. Minsk, 2019, pp. 140-143 (in Russian).

23. Hermanson G. T. Bioconjugate techniques, 3rd edn. Amsterdam, Academic Press, Elsevier, 2013. 1200 p. https://doi.org/10.1016/C2009-0-64240-9

24. Galardy R. E., Printz M. P., Craig L. C. Tritium-hydrogen exchange of bacitracin A. Evidence for an intramolecular hydrogen bond. Biochemistry, 1971, vol. 10, no. 13, pp. 2429-2436. https://doi.org/10.1021/bi00789a001

25. Delincee, H., Radola, B. J. Fractionation of horseradish peroxidase by preparative isoelectric focusing, gel chromatography and ion-exchange chromatography. European Journal of Biochemistry, 1975, vol. 52, no. 2, pp. 321-330. https://doi.org/10.1111/j.1432-1033.1975.tb04000.x

26. Leonard P. Immunoassay validation. O’Kennedy R., Murphy C. (eds.) Immunoassays: development, applications and future trends. New York, Pan Stanford Publishing Pte. Ltd, 2017, pp. 89-115. https://doi.org/10.1201/9781315206547-4_

27. Vashist S. K., Luong J. H. T. Bioanalytical requirements and regulatory guidelines for immunoassays. Handbook of immunoassay technologies. Academic Press, Elsevier, 2018, pp. 81-95. https://doi.org/10.1016/b978-0-12-811762-0.00004-9

28. Konopelko L.A. (ed.) Guideline EURACHIM/ CITAC. Quantifying Uncertainty in Analytical Measurement. St. Petersburg, VNIIM D.I. Mendeleyeva, 2002. 149 p. (in Russian).

29. Barwick V. J., Ellison S. L. R. VAMProject 3.2.1. Development and Harmonisation of Measurement. Uncertainty Principles. Part (d): Protocol for uncertainty evaluation from validation data. LGC (Teddington) Ltd., 2000. 87 p.

30. Byzova N. A., Zvereva E. A., Zherdev A. V., Dzantiev B. B. Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. Journal of AOAC International, 2010, vol. 93, no. 1, pp. 36-43. https://doi.org/10.1093/jaoac/93.1.36

31. Byzova, N. A., Zvereva, E. A., Zherdev, A. V., Dzantiev, B. B. Immunochromatographic technique for express determination of ampicillin in milk and dairy products. Applied BiochemistryandMicrobiology, 2011, vol. 47, no. 6, pp. 627-634. https://doi.org/10.1134/s0003683811060032


Review

Views: 756


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)