Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Swelling behavior of acrylamide and sodium acrylate copolymer hydrogel in aqueous solutions of copper (II) chloride with amino acids additives

https://doi.org/10.29235/1561-8331-2020-56-3-339-351

Abstract

Swelling of acrylamide and sodium acrylate copolymer polyelectrolyte hydrogel in aqueous Cu(II) chloride solutions with additives of proteinogenic amino acids glycine and L-histidine has been studied. Research relevance is due to the application of such systems in agrochemical products that are supposed to have high water absorption capacity in the presence of microelements ions and amino acids, which are used to prevent nutritional deficiency and make plants resistant to adverse weather conditions and diseases. Gravimetry, atomic absorption spectrometry, FTIR ATR spectroscopy and molecular absorption spectrophotometry were used. The impact of acidity (pH 3, 5 and 7) of aqueous Cu(II) chloride solutions with amino acids additives on the hydrogel swelling degree and Cu(II) ions absorption has been determined. The reasons for changes in the hydrogel swelling degree in aqueous Cu(II) chloride solutions in presence of glycine and L-histidine have been found. The main product of the crosslinked copolymer interaction with the components of 0.01 M aqueous Cu(II) chloride solution with the addition of 0.04 M glycine or L-histidine at pH 3 has been assumed to be a mixed Cu(II) ions complex with functional groups of both copolymer and amino acids.

About the Authors

D. L. Kudryavskii
Research Institute for Physical Chemical Problems, Belarusian State University
Belarus

Dmitry L. Kudryavsky - Master’s student, Junior Researcher intern.

14, Lenin-gradskaya Str., 220006, Minsk



E. K. Fomina
Research Institute for Physical Chemical Problems, Belarusian State University
Belarus

Elena K. Fomina - Ph. D. (Chemistry), Leading Researcher.

14, Leningradskaya Str., 220006, Minsk



L. P. Krul
Belarusian State University
Belarus

Leonid P. Krul - D. Sc. (Chemistry), Professor.

14, Leningradskaya Str., 220006, Minsk



O. V. Yakimenko
Belarusian State University
Belarus

Oleg V. Yakimenko - Junior Researcher.

14, Leningradskaya Str., 220006, Minsk



References

1. Zohuriaan-Mehr M. J., Kabiri K. Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 2008, vol. 17, no. 6, pp. 451-477.

2. Peppas N. A. Devices based on intelligent biopolymers for oral protein delivery. International Journal of Pharmaceutics, 2004, vol. 277, no. 1-2, pp. 11-17. https://doi.org/10.1016/j.ijpharm.2003.03.001

3. Hennink W. E., van Nostrum C. F. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2002, vol. 54, no. 1, pp. 13-36. https://doi.org/10.1016/S0169-409X(01)00240-X

4. Gupta P., Vermani K., Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery, 2002, vol. 7, no. 10, pp. 569-579. https://doi.org/10.1016/S1359-6446(02)02255-9

5. Karadag E., Uzum O. B., Saraydin D., Guven O. Dynamic swelling behavior of y-radiation induced polyelectrolyte poly(AAm-co-CA) hydrogels in urea solutions. International Journal of Pharmaceutics, 2005, vol. 301, no. 1-2, pp. 102-111. https://doi.org/10.1016/j.ijpharm.2005.05.026

6. Krul’ L. P., Shahno O. V., Grinjuk E. V., Skakovskij E. D., Tychinskaja L. Ju., Gospodarev D. A., Makarevich A. V. Composition of complex compounds in polyelectrolyte hydrogels used for oil recovery enhancement. Neftekhimicheskii kom-pleks [Petrochemical complex], 2012, vol. 9, no. 2, pp. 3-7 (in Russian).

7. Chavda H. V., Patel C. N. Preparation and characterization of Swellable Polymer-Based Superporous Hydrogel Composite of Poly (Acrylamide-co-Acrylic Acid). Trends in Biomaterials and Artificial Organs, 2010, vol. 24, no 1, pp. 83-89.

8. Krul’ L. P., Brazhnikov M. M., Matusevich Ju. I., Brazhnikova L. Ju., Novikov O. A. The specifics of the technological process of obtaining a synthetic water-soluble polymer from polyacrylonitrile fiber waste. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences ofBelarus. Chemical series, 2000, no. 2, pp. 92-95 (in Russian).

9. Rosiak J. M., Ulanski P. Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry, 1999, vol. 55, no. 2, pp. 139-151. https://doi.org/10.1016/S0969-806X(98)00319-3

10. Rybak A. S., Grinyuk E. V., Klimets T. G., Brazhnikov M. M., Shadyro O. I., Krul’ L. P., Polikarpov A. P. Radiation crosslinking of an acrylamide-sodium acrylate copolymer in aqueous solutions. High Energy Chemistry, 2003, vol. 37, no. 4, pp. 265-267. https://doi.org/10.1023/A:1024746600061

11. Grinyuk E. V., Fomina E. K., Yakimtsova L. B., Krul’ L. P. New film-forming agricultural biotechnological preparations based on chemically cross-linked functionalized polyacrylamides. Sviridovskie chteniya: sbornik statei [Sviridov reading: a collection of papers]. Minsk, BSU, 2012, issue 8, pp. 194-201 (in Russian).

12. Shakhno O. V., Grinyuk E. V., Krul’ L. P. Determination of the composition of macromolecular metal complexes in polyelectrolytic hydrogels based on functionalyzed polyacrylamides cross-linked with chromium acetate (III). Doklady Natsional ’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2013, vol. 57, no. 3, pp. 63-69 (in Russian).

13. Lentz R. D., Sojka R. E. Long-term polyacrylamide formulation effects on soil erosion, water infiltration, and yields of furrow-irrigated crops. Agronomy Journal, 2009, vol. 101, no. 2, pp. 305-314. https://doi.org/10.2134/agronj2008.0100x

14. Cochrane B. H. W., Reichert J.M., Eltz F. L. F., Norton L. D. Controlling soil erosion and runoff with polyacrylamide and phosphogypsum on subtropical soil. Transactions of the ASAE, 2005, vol. 48, pp. 149-154. https://doi.org/10.13031/2013.17958

15. Sivapalan S. Benefits of treating a sandy soil with a crosslinked-type polyacrylamide. Australian Journal of Experimental Agriculture, 2006, vol. 46, pp. 579-584. https://doi.org/10.1071/ea04026

16. Al-Humaid A. I., Moftah A. E. Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. Journal of Plant Nutrition, 2007, vol. 30, no. 1, pp. 53-66. https://doi.org/10.1080/01904160601054973

17. Krul’ L. P., Matusevich Ju. I., Grinyuk E. V., Brazhnikova L. Yu., Yakimtsova L. B., Fomina E. K., Murashko E.A., Danilovich T. G., Ivanova T. A., Butovskaya G. V., Shadyro O. I., Mamaev O. I., Privalov F. I. Polyelectrolytic hydrogels based on nitron hydrolyzate. Trudy Belorusskogo Gosudarstvennogo Universiteta. Fiziologicheskie, biohimicheskie i molekuljarnye osnovy funkcionirovanija biosistem = Proceedings of the Belarusian State University. Series of Physiological, Biochemical and Molecular Biology Sciences, 2008, vol. 3, no. 2, pp. 59-69 (in Russian).

18. Krul L. P., Grinyuk E. V., Yakimtsova L. B., Fomina E. K., Danilovich T. G., Brazhnikova L. Yu., Yakimenko O. V., Polikarpov A. P. Gelation in aqueous solutions of functionalized polyacrylamides. Materialy. Tehnologii. Instrumenty [Materials. Technologies. Instruments], 2011, vol. 16, no. 3, pp. 85-89 (in Russian).

19. Wohrle D., Pomogailo A. D. Metal complexes and metals in macromolecules: synthesis, structure and properties. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2003. 685 p. https://doi.org/10.1002/9783527610778_

20. Fomina E. K., Grinyuk E. V., Butovskaya G. V., Krul L. P. Macromolecular complexes of microelements with a copolymer of acrylamide and sodium acrylate. Sviridovskie chteniya: sbornik statei [Sviridov readings: a collection of papers]. Minsk, BSU, 2017, issue 13, pp. 294-314 (in Russian).

21. Fomina E. K., Krul L. P., Grinyuk E. V. Phase state of aqueous solutions of acrylamide-sodium acrylate copolymers in the presence of copper, zinc, and manganese ions. Russian Journal of Applied Chemistry, 2015, vol. 88, no. 9, pp. 1500-1504. https://doi.org/10.1134/S1070427215090189

22. Fomina E. K., Krul L. P., Grinyuk E. V., Yakimenko O. V. Effect of Cu2+, Zn2+, and Mn2+ ions on the water absorption of polyelectrolyte hydrogels based on polyacrylonitrile fiber hydrolyzate. Russian Journal of Applied Chemistry, 2014, vol. 87, no. 9. - pp. 1334-1339. https://doi.org/10.1134/S1070427214090237

23. Vesnebolotskaya S. A., Bel’nikevich N. G., Budtova T. V. Influence of surface layer formation on swelling of polyelectrolytic hydrogels in aqueous salt solutions. Russian Journal of Applied Chemistry, 2010, vol. 83, no. 11, pp. 2006-2010. https://doi.org/10.1134/S1070427210110212

24. Zoolshoev Z. F., Vesnebolotskaya S. A., Bel’nikevich N. G., Elyashevich G. K. Behavior of sodium polyacrylate hydrogels in copper sulfate solutions. Russian Journal of Applied Chemistry, 2008, vol. 81, no. 9, pp. 1648-1651. https://doi.org/10.1134/S1070427208090346

25. Zavgorodnya O., Kozlovskaya V., Kharlampieva E. Nanostructured highly-swollen hydrogels: Complexation with amino acids through copper (II) ions. Polymer, 2015, vol. 74, pp. 94-107. https://doi.org/10.1016/j.polymer.2015.08.010

26. Beck W. Metal Complexes of Biologically Important Ligands, CLXXII [1]. Metal Ions and Metal Complexes as Protective Groups of Amino Acids and Peptides - Reactions at Coordinated Amino Acids. Zeitschriftfur Naturforschung, 2014, vol. 6, pp. 1221-1245. https://doi.org/10.1515/znb-2009-11-1202

27. Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., Nardi S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 2009, vol. 172, no. 2, pp. 237-244. https://doi.org/10.1002/jpln.200800174

28. Kudryavskiy D. L., Fomina E. K., Butovskaya G. V., Grinyuk E. V., Tychinskaya L. Yu., Skakovskiy E. D. Macromolecular mixed complexes of copper (II) with glycine and copolymer of acrylamide and sodium acrylate. Polimernye materialy i tehnologii = Polymeric materials and technologies, 2019, vol. 5, no. 4, pp. 22-33 (in Russian).

29. Wu G. Amino acids: biochemistry and nutrition. Boca Raton, CRC Press, 2013. 459 p. https://doi.org/10.1201/b14661

30. Mesu J. G., Visser T., Soulimani F., van Faassen E. E., de Peinder P., Beale A. M., Weckhuysen B. M. New insights into the coordination chemistry and molecular structure of copper(II) histidine complexes in aqueous solutions. Inorganic Chemistry, 2006, vol. 45, no. 5, pp. 1960-1971. https://doi.org/10.1021/ic051305n

31. Francois J., Heitz C., Mestdagh M. Spectroscopic study (u.v.-visible and electron paramagnetic resonance) of the interactions between synthetic polycarboxylates and copper ions. Polymer, 1997, vol. 38, no. 21, pp. 5321-5332. https://doi.org/10.1016/S0032-3861(97)00095-5

32. Ogorodnikova N. P., Starkova N. N., Ryabukhin Yu. I. A direct method for the synthesis of copper (II) complexes with amino acids in non-aqueous solvents. Himiya i himicheskaya tehnologiya = Chemistry and chemical technology, 2009, vol. 52, no. 12, pp. 45-46 (in Russian).

33. Hubner M., Hauer I., Muller C., Rusu D., Botond K., David L. Spectroscopic studies of copper (II) complexes with some amino acid as ligand. Analele Universitajii de Vest din Timisoara, 2011, vol. LV, pp. 77-85.


Review

Views: 917


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)