Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Nanotubes with a structure of the «magnetic core-noble metal shell» type

https://doi.org/10.29235/1561-8331-2020-56-4-399-407

Abstract

Using a simple two-stage method including the electrochemical synthesis of Ni nanotubes in the pores of PET membranes and their coating with gold or platinum, nanotubes with a structure of the «magnetic core - noble metal shell» type have been synthesized. The morphology of the coating is a thin continuous film with growths of various shapes. X-ray diffraction analysis estimated separate phases of nickel (core) and noble metal (coating). The magnetic properties of coated nanotubes do not differ significantly from the properties of the initial nanotubes. The method allows one to synthesize structures such as one-dimensional nanostructures of the «magnetic core - noble metal shell» type for use in the detection of chemical and biological compounds, as magnetic carriers for the delivery of drugs and genes, which can also be used as multicyclic catalysts on a magnetic carrier.

About the Authors

E. E. Shumskaya
Institute of Chemistry of New Materials, National Academy of Science of Belarus
Russian Federation

Alena E. Shumskaya - Researcher.

36, F. Skoryna Str., 220141, Minsk



A. A. Rogachev
Institute of Chemistry of New Materials, National Academy of Science of Belarus
Russian Federation

Alexandr A. Rogachev - D. Sc. (Engineering), Professor, Director.

36, F. Sko-ryna Str., 220141, Minsk



V. E. Agabekov
Institute of Chemistry of New Materials, National Academy of Science of Belarus
Russian Federation

Vladimir E. Agabekov - Academician, D. Sc. (Chemistry), Professor.

36, F. Sko-ryna Str., 220141, Minsk



E. М. Dovydenko
Institute of Chemistry of New Materials, National Academy of Science of Belarus
Russian Federation

Egor M. Dovydenko - Junior Researcher.

36, F. Skoryna Str., 220141, Minsk



A. V. Petkevich
Institute of Chemistry of New Materials, National Academy of Science of Belarus
Russian Federation

Anna V. Petkevich - Junior Researcher.

36, F. Skoryna Str., 220141, Minsk



I. V. Korolkov
Astana branch of the Institute of Nuclear Physics
Russian Federation

Ilya V. Korolkov - Ph. D. (Engineering), Head of the Laboratory.

2/1, Abylaikhan Ave., 010008, Astana



A. L. Kozlovskyi
Astana branch of the Institute of Nuclear Physics
Russian Federation

Artem L. Kozlovskiy - Ph. D. (Engineering), Acting Head of the Laboratory.

2/1, Abylaikhan Ave., 010008, Astana



M. V. Zdorovets
L.N. Gumilyov Eurasian National University
Russian Federation

Maxim V. Zdorovets - Ph. D. (Physics and Mathematics), Head of the Laboratory.

2/1, Abylaikhan Ave., 010008, Astana



V. D. Bundyukova
Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus
Russian Federation

Victoria D. Bundyukova - Junior Researcher.

19, P. Brovka Str., 220072, Minsk


D. V. Yakimchuk
Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus
Russian Federation

Dmitry V. Yakimchuk - Leading Researcher.

19, P. Brovka Str., 220072, Minsk



E. Yu. Kaniukov
Research Technological University MISiS
Russian Federation

Egor Yu. Kaniukov - Senior Researcher.

4, Leninsky Prospect, 119049, Moscow


References

1. Kaniukov E. Y., Shumskaya E. E., Kutuzau M. D., Borgekov D. B., Kenzhina I. E., Kozlovskiy A. L., Zdorovets M. V. Ferromagnetic Nanotubes in Pores of Track Membranes for the Flexible Electronic Elements. Devices and Methods of Measurements, 2017, vol. 8, no. 3, pp. 214-221. https://doi.org/10.21122/2220-9506-2017-8-3-214-221

2. Flatau A. B., Stadler B. J. H., Park J., Sai K., Reddy M., Downey P. R., Mudivarthi C., Order M. Van. Magnetostrictive Fe-Ga Nanowires for actuation and sensing applications, 2nd ed. Elsevier Ltd., 2020, pp. 737-776. https://doi.org/10.1016/B978-0-08-102832-2.00025-63.

3. Cherkasov D., Panov D., Doludenko I., Kanevskiy V., Muslimov A., Zagorskiy D., Biziaev D., Bukharaev A. Microscopy investigation of conical and layered nanowires. IOP Conference Series: Materials Science and Engineering, 2019, vol. 699, p. 012005. https://doi.org/10.1088/1757-899X/699/1/012005

4. Zhang Y., Um J., Stadler B., Franklin R. Signal Enhancement for Ferromagnetic Resonance Measurement of Magnetic Nanowire array. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019, pp. 1305-1306. https://doi.org/10.1109/apusncursinrsm.2019.8889102

5. Guo C. F., Ren Z. Flexible transparent conductors based on metal nanowire networks. Materials Today, 2014, vol. 18, no. 3, pp. 143-154. https://doi.org/10.1016/j.mattod.2014.08.018

6. Mitchell D. T., Lee S. B., Trofin L., Li N., Nevanen T. K., Soderlund H., Martin C. R. Smart Nanotubes for Bioseparations and Biocatalysis. Journal of the American Chemical Society, 2002, vol. 124, no. 40, pp. 11864-11865. https://doi.org/10.1021/ja027247b

7. Haehnel V., Fahler S., Schaaf P., Miglierini M., Mickel C., Schultz L. and Schlorb H. Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Materialia, 2010, vol. 58, no. 7, pp. 2330-2337. https://doi.org/10.1016/j.actamat.2009.12.019

8. Salem A. K., Searson P. C., Leong K. W. Multifunctional nanorods for gene delivery. Nature Materials, 2003, vol. 2, no. 10, pp. 668-671. https://doi.org/10.1038/nmat974

9. Hillebrenner H., Buyukserin F., Stewart J. D., Martin C. R. Template synthesized nanotubes for biomedical delivery applications. Nanomedicine (Lond)., 2006, vol. 1, no. 1, pp. 39-50. https://doi.org/10.2217/17435889.1.1.39

10. Vivas L. G., Ivanov Y. P., Trabada D. G., Proenca M. P., Chubykalo-Fesenko O., Vazquez M. Magnetic properties of Co nanopillar arrays prepared from alumina templates. Nanotechnology, 2013, vol. 24, no. 10, p. 105703. https://doi.org/10.1088/0957-4484/24/10/105703

11. Martin C. R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, vol. 266, no. 5193, pp. 19611966. https://doi.org/10.1126/science.266.5193.196112.

12. Zhao X., Ma L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. International Journal of Hydrogen Energy, 2009, vol. 34, no. 11, pp. 4788-4796. https://doi.org/10.1016/j.ijhydene.2009.03.023

13. Murphy J. J. and Melchiorre P. Organic chemistry: Light opens pathways for nickel catalysis. Nature, 2015, vol. 524, no. 7565, pp. 297-298. https://doi.org/10.1038/nature15200

14. Grabchikov S. S., Trukhanov A. V., Trukhanov S. V., Kazakevich I. S., Solobay A. A., Erofeenko V. T., Vasilenkov N. A., Volkova O. S., Shakin A. Effectiveness of the magnetostatic shielding by the cylindrical shells. Journal of Magnetism and Magnetic Materials, 2016, vol. 398, pp. 49-53. https://doi.org/10.1016/j.jmmm.2015.08.122

15. Zhang L., Petit T., Peyer K. E., Nelson B. J. Targeted cargo delivery using a rotating nickel nanowire. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, vol. 8, no. 7, pp. 1074-1080. https://doi.org/10.1016/j.nano.2012.03.002

16. Moraes Silva S., Tavallaie R., Sandiford L., Tilley R. D., Gooding J. J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chemical Communications, 2016, vol. 52, no. 48, pp. 7528-7540. https://doi.org/10.1039/c6cc03225g

17. Shumskaya A., Bundyukova V., Kozlovskiy A., Zdorovets M., Kadyrzhanov K., Kalkabay G., Kaniukov E. Evolution of morphology , structure , and magnetic parameters of Ni nanotubes with growth in pores of a PET template. Journal of Magnetism and Magnetic Materials, 2020, vol. 497, p. 165913. https://doi.org/10.1016/j.jmmm.2019.165913

18. Ahmad T., Bae H., Rhee I., Chang Y., Jin S.-U., Hong S. Gold-Coated Iron Oxide Nanoparticles as a contrast Agent in Magnetic Resonance Imaging. Journal of Nanoscience and Nanotechnology, 2012, vol. 12, no. 7, pp. 5132-5137. https://doi.org/10.1166/jnn.2012.6368

19. Cao L., Zhao Z., Cao L., Zhao Z., Liu Z., Gao W., Dai S., Gha J., Xue W. Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 2019, vol. 1, no. 6, pp. 1-14. https://doi.org/10.1016/j.matt.2019.07.015

20. Kaniukov E. Y., Shumskaya E. E., Yakimchuk D. V., Kozlovskiy A. L., Ibragimova M. A., Zdorovets M. V. Evolution of the polyethylene terephthalate track membranes parameters at the etching process. Journal of Contemporary Physics (Armenian Academy of Sciences), 2017, vol. 52, no. 2, pp. 155-160. https://doi.org/10.3103/S1068337217020098

21. Kozlovskii A., Borgekov K., Zdorovets M., Arkhangelsky E., Shumskaya A., Kanukov E. Application of track membranes in processes of direct and reverse osmosis. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2017, no. 1, pp. 45-51 (in Russian).

22. Korolkov I. V, Mashentseva A. A., Guven O., Zdorovets M. V., Taltenov A. A. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, vol. 365, pp. 651-655. https://doi.org/10.1016/j.nimb.2015.10.031

23. Korolkov I. V., Guven O., Mashentseva A. A., Atici A. B., Gorin Y. G., Zdorovets M. V., Taltenov A. A. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes. Radiation Physics and Chemistry, 2017, vol. 130, pp. 480-487. https://doi.org/10.1016/j.radphyschem.2016.10.006

24. Osminkina L. A., Zukovskaja O., Agafilushkina S. N., Stranik O., Gonchar K. A., Yakimchuk D., Chermoshentsev D. A., Dyakov S. A., Nikolay A., Weber K., Popp J., May D. C. and Sivakov V. Gold nanoflowers grown in a porous Si / Si-O2matrix : the fabrication process and plasmonic properties. Applied Surface Science, 2019, vol. 507, p. 144989. https://doi.org/10.1016/j.apsusc.2019.144989

25. Shumskaya A. E., Kozlovskiy A. L., Zdorovets M. V., Evstigneeva S. A., Trukhanov A. V., Trukhanov S. V., Vinnik D. A., Kaniukov E. Y., Panina L. V. Correlation between structural and magnetic properties of FeNi nanotubes with different lengths. Journal of Alloys and Compounds, 2019, vol. 810, p. 151874. https://doi.org/10.1016/j.jallcom.2019.151874

26. Wu Y., Chung T., Huang J., Wu P., Chen P., Lee J., Chan T. Electrochemistry Communications Conformal deposition of Pt on titania nanotubes to produce a bio-electrode for neuro-stimulating applications. Electrochemistry Communications, 2018, vol. 88, pp. 61-66. https://doi.org/10.1016/j.elecom.2018.01.019

27. Kaniukov E., Kozlovsky A., Shlimas D., Yakimchuk D., Zdorovets M., Kadyrzhanov K. Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering, 2016, vol. 110, p. 012013. https://doi.org/10.1088/1757-899X/110/1/012013


Review

Views: 628


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)