Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Electroless deposition of powdery alloys with core-shell particles structure from solutions. Vestsi Natsyyanal’nai akademii navuk Belarusi

https://doi.org/10.29235/1561-8331-2020-56-4-408-418

Abstract

Methods of binary and ternary powdery alloys (Cu-Sn, Cu-Zn, Ni-Cu-Zn, Ni-Sn-Zn, Cu-Fe, Ni-Cu-Fe, Ni-Cu, Ni-Cu-Al) preparation with core-shell particles structure have been developed using the processes either of copper, nickel, tin ions cementation from solutions with tin, zinc, iron powders or nickel chemical deposition from hypophosphite solutions on the mixtures of copper and aluminum powders. Metals quota in the powdery products can be controlled by varying the duration of cementation or chemical deposition, the ratio of reagents quantities, pH and concentration of solutions. The possibility of simultaneous reduction of nickel(II) and tin(II) ions with zinc powder or copper(II) and nickel(II) ions with iron powder with the formation of ternary alloys has been revealed. Low-temperature formation of intermetallic phases in Cu-Sn, Ni-Sn-Zn systems and solid solutions in Ni-Cu-Zn, Cu-Fe, Ni-Cu-Fe systems has been shown to occur during the cementation. The particles of the initial powders (Al, Cu) are coated with loose and more or less sealed shells during nickel chemical reduction from solutions. Spherical particles, flower-type compact aggregates or dendrites, depending on the nature of metals and processes duration, are formed during the cementation. The powders obtained by cementation andchemical deposition from solutions can be used in the manufacture of products for structural and instrumental (Cu-Sn, Cu-Zn, Ni-Cu-Zn, Ni-Sn-Zn, Cu-Fe, Ni-Cu, Ni-Cu-Al), antifriction (Ni-Cu-Fe, Ni-Cu) and electrical (Ni-Cu, Ni-Cu-Zn) applications, as well as solders (Cu-Zn, Ni-Sn-Zn).

About the Authors

T. N. Vorobyova
Belarusian State University
Russian Federation

Tatiana N. Vorobyova - D. Sc. (Chemistry), Full Professor BSU, Chief Researcher, Research Institute for Physical Chemical Problems BSU.

14, Leningradskaya Str., 220050, Minsk; 14, Leningradskaya Str., 220006, Minsk



O. N. Vrublevskaya
Research Institute for Physical Chemical Problems, Belarusian State University
Russian Federation

Olga N. Vrublevskaya - Ph. D. (Chemistry), Associate Professor.

14, Leningradskaya Str., 220006, Minsk


A. A. Kudaka
Belarusian State University
Russian Federation

Anton A. Kudaka - Postgraduate student.

14, Leningradskaya Str., 220050, Minsk



M. G. Galuza
Research Institute for Physical Chemical Problems, Belarusian State University
Russian Federation

Maryia G. Galuza - Junior Researcher.

14, Leningradskaya Str., 220006, Minsk



A. V. Kobets
Research Institute for Physical Chemical Problems, Belarusian State University
Russian Federation

Anna V. Kobets - Researcher.

14, Leningradskaya Str., 220006, Minsk



А. A. Petrova
Belarusian State University
Russian Federation

Aleksandra A. Petrova - Student.

14, Leningradskaya Str., 220050, Minsk



G. Al-Nakhar
Belarusian State University
Russian Federation

Gadzher Al-Nakhar - Student.

14, Leningradskaya Str., 220050, Minsk



References

1. Fedorchenko I. M., Frantsevich I. N., Radomysel’skii I. D. [et al.]. Powder metallurgy. Materials, technology, properties, applications. Kiev, Naukova dumka Publ., 1985. 624 pp. (in Russian).

2. Il’yushchenko A. F., Savich V. V., Skorokhod V. V., Vityaz’ P. A., Smirnov, G. V., Fedosyuk V. M. [et al.]. Poroshko-vaya metallurgiya v Belarusi: vyzovy vremeni: sbornik nauchnykh statei [Powder metallurgy in Belarus: challenges of time. Collection of scientific articles]. Minsk, Belaruskaya navuka Publ., 2017. 532 p. (in Russian).

3. Neikov O. D., Naboychenko S. S., Yefimov N. A. Handbook of non-ferrous metal powders. Technologies and applications. 2nd ed. Amsterdam, Elsevier, 2019. 995 р. https://doi.org/10.1016/C2014-0-03938-X

4. Buznik V. M. (ed.) Ultrafine and nanosized powders: development, structure, production and application. Tomsk, NTL Publ., 2009. 192 p. (in Russian).

5. Vinnikov V. P., Generalov M. B. Methods of nanodispersed powder production. St. Petersburg: Professia Publ., 2016. 235 p. (in Russian).

6. Arzamasov B. N., Solovyova T. V. (eds.). Handbook on structural materials. Moscow, MGTU im. N. E. Baumana Publ., 2005. 640 p. (in Russian).

7. Babets N. V., Vasiliev B. N., Ismailov M. A. Improving the antifriction properties of iron-based composite powdery materials. Metallurg = Metallurgist, 2012, no. 6, pp. 68-70. (in Russian).

8. Gnesin G. G. (ed.) Spechennye materialy dlya elektrotekhniki i elektroniki: spravochnik [Sintered materials for electrotechnology and electronics. Moscow, Metallurgiya Publ, 1981. 344 p. (in Russian).

9. Chang J., Seo S.-K., Lee H. M. Phase equilibria in the Sn-Ni-Zn ternary system: isothermal sections at 200 °C, 500 °C, and 800 °C. Journal of Electronic Materials, 2010, vol. 39, no. 12, pp. 2643-2652. https://doi.org/10.1007/s11664-010-1313-2

10. Alkatsev M. I. Cementation processes in non-ferrous metallurgy. Moscow, Metallurgiya Publ., 1981. 116 p. (in Russian).

11. Vrublevskaya O. N., Vorobyova T. N., Galuza M. G., Shikun M. A., Kudaka A. A., Venhlinskaya E. E. Synthesis of powders and coatings of tin and its alloys with a controlled composition and structure by cementation from solutions. Advances in Chemistry Research, New York, Nova Science Publishers, 2019, vol. 52, chapter 4, pp. 133-251.

12. Sviridov V. V., Vorobyova T. N., Gaevskaya T. V., Stepanova L. I. Chemical deposition of metals from aqueous solutions. Minsk, Universitetskoe Publ., 1987. 270 p. (in Russian).

13. Vorobyova T. N., Maltanava H. M., Vrublevskaya O. N., Grigoreva O. Yu. Obtaining of nanostructural Au-Sn powders and films using cementation reactions. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2. Khimiya. Biologiya. Geografia =Bulletin of the Belarusian State University. Series 2. Chemistry. Biology. Geography, 2014, no. 4, pp. 9-17 (in Russian).

14. Vorobyova T. N. Processes of alloys formation upon the simultaneous deposition of metals from solutions. Khimiya novykh materialov i biologicheski aktivnykh veshchestv [Chemistry of new materials and bioactive substances]. Minsk, BSU Publ., 2016, pp. 53-76 (in Russian).

15. Vorobyova T. N., Vrublevskaya O. N., Galuza M. G., Glibin V. P. Chemical synthesis of Cu-Sn powder by tin(II) cementation with copper in aqueous solution. Surfaces and Interfaces, 2016, vol. 4, pp. 9-17. https://doi.org/10.1016/j.surf-in.2016.07.009

16. Schmetterer C., Effenberger H. S., Rajamohan D., Flandorfer H. The crystal structures of Ni3+xSn4Zn and Ni6+xSn8Zn and their structural relations to Ni3+xSn4, NiSn and Ni5-gZnSn4. Journal of Solid State Chemistry, 2016, vol. 238, pp. 139-146. https://doi.org/10.1016/j.jssc.2016.02.001

17. Gandova V., Soares D., Lilova K., Tedenac J.-C., Vassilev G. P. Phase equilibria in the Sn-Zn-Ni system. International Journal of Materials Research, 2011, vol. 102, no. 3, pp. 257-268. https://doi.org/10.3139/146.110481

18. Kudaka A. A., Vorobyova T. N. Preparation of Ni-Zn and Ni-Zn-Sn powderv alloys from solutions by cementation. Sviridovskie chteniya: Sb. st. [Sviridov Readings. A collection of Papers]. Minsk, BSU, 2018, iss. 14, pp. 19-33 (in Russian).

19. Kudaka A. A., Vorobyova T. N. Phase transformations at heating of Sn-Ni-Zn powders obtained by cementation from solutions. Material Science. Non-Equilibrium Phase Transformations, 2019, vol. 5, iss. 3. pp. 99-101.


Review

Views: 735


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)