Electrokinetic properties of colloid calcium phosphate
https://doi.org/10.29235/1561-8331-2020-56-4-419-428
Abstract
Electrokinetic properties of colloid calcium phosphates, i. e. dicalcium phosphate dihydrate (brushite), tricalcium phosphate, hydroxyapatite, have been determined in different media. Obtained Z-values ranging from -29 to +21 mV indicate the ability of calcium phosphate particles to adsorb both cations (Mg2+, Ca2+) and anions (OH-, NO3-, CO32-, HPO42). Dicalcium phosphate dihydrate ζ -potential values are positively shifted by 2-9 mV as compared to that of hydroxyapatite, and ζ -potentials of tricalcium phosphate and hydroxyapatite differ slightly by 1-3 mV owing to its apatitic nature. During the maturation of hydroxyapatite, its absolute Z-potential values are gradually increased from +6 to +22 mV and from -19 до -27 mV due to the lowering of Ca2+ content in mother solution rather than an increase of Ca/P molar ratio of dispersed phase. According to the data obtained, the electrokinetic properties of calcium phosphate particles are rather determined by their crystal structure than by Ca/P molar ratio.
About the Authors
I. E. GlazovRussian Federation
Ilya E. Glazov - Junior Researcher.
9/1, Surganov Str., 220072, Minsk
P. O. Malakhovsky
Russian Federation
Pavel O. Malakhovsky - Junior Researcher.
14, Leningradskaya Str., 220006
V. K. Krut’ko
Russian Federation
Valentina K. Krut’ ko - Ph. D. (Chemistry), Associate Professor, Head of the Laboratory.
9/1, Surganov Str., 220072, Minsk
O. N. Musskaya
Russian Federation
Olga N. Musskaya - Ph. D. (Chemistry), Associate Professor, Senior Researcher.
9/1, Surganova Str., 220072, Minsk
A. I. Kulak
Russian Federation
Anatoly I. Kulak - Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director.
9/1, Surganov Str., 220072, Minsk
References
1. Delgado A. V., Gonzalez-Caballero F., Hunter R. J., Koopal L. K., Lyklema J. Measurement and interpretation of elec-trokinetic phenomena. Journal of colloid and interface science, 2007, vol. 309, no. 2, pp. 194-224.
2. Uskokovic V., Odsinada R., Djordjevic S., Habelitz S. Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Archives of oral biology, 2011, vol. 56, no. 6, pp. 521-532. https://doi.org/10.1016/j.archoralbio.2010.11.011
3. Meyer U., Kruse-Losler B., Wiesmann H. P Principles of bone formation driven by biophysical forces in craniofacial surgery. British Journal of Oral and Maxillofacial Surgery, 2006, vol. 44, no. 4, pp. 289-295. https://doi.org/10.1016/j.bjoms.2005.06.026
4. Rey C., Combes C., Drouet C., Cazalbou S., Grossin D., Brouillet F., Sarda S. Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Progress in Crystal Growth and Characterization of Materials, 2014, vol. 60, pp. 63-73. https://doi.org/10.1016/j.pcrysgrow.2014.09.005
5. Tsuber V. K., Lesnikovich L. A., Kulak A. I., Trofimova I. V., Petrov P. T., Trukhacheva T. V., Kovalenko Y. D., Krasil’nikova V. L. Synthesis, identification and determination of impurities in bioactive hydroxyapatite. Pharmaceutical Chemistry Journal, 2006, vol. 40, no. 8, pp. 455-458. https://doi.org/10.1007/s11094-006-0151-2
6. Cazalbou S., Combes C., Eichert D., Rey C. Adaptative physico-chemistry of bio-related calcium phosphates, Journal of Materials Chemistry, 2004, vol. 14, no. 14, pp. 2148-2153. https://doi.org/10.1039/b401318b
7. Bengtsson A., Shchukarev A., Persson P, Sjoberg S. Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems. Langmuir, 2009, vol. 25, no. 4, pp. 2355-2362. https://doi.org/10.1021/la803137u
8. Somasundaran P. Zeta potential of apatite in aqueous solutions and its change during equilibration, Journal of Colloid and Interface Science, 1968, vol. 27, no. 4, pp. 659-666. https://doi.org/10.1016/0021-9797(68)90098-2
9. Uskokovic V. Dynamic light scattering based microelectrophoresis: main prospects and limitations. Journal of dispersion science and technology, 2012, vol. 33, no. 12, pp. 1762-1786. https://doi.org/10.1080/01932691.2011.625523
10. Owens C. L., Nash G. L., Hadler K., Fitzpatrick R. S., Anderson C. G., Wall F. Apatite enrichment by rare earth elements: a review of the effects of surface properties. Advances in colloid and interface science, 2019, vol. 265, pp. 14-28. https://doi.org/10.1016/j.cis.2019.01.004
11. Zhu B., Xia P., Ho W. Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 2015, vol. 344, pp. 188-195.
12. Borisov V. M. Method of physicochemical assessment of interaction of reagents with the surface of mineral grains in flotation. Khimicheskaya Promyshlennost, 1954, vol. 19, pp. 336-338.
13. Jin X., Zhuang J., Zhang Z., Guo H., Tan J. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. Journal of colloid and interface science, 2015, vol. 443, pp. 125-130. https://doi.org/10.1016/j.jcis.2014.12.010
14. Knowles J.C., Callcut S., Georgiou G. Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials, 2000, vol. 21, no. 13, pp. 1387-1392. https://doi.org/10.1016/s0142-9612(00)00032-6
15. Destainville A., Champion E., Bernache-Assollant D., Laborde D. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Materials Chemistry and Physics, 2003, vol. 80, no. 1, pp. 269-277. https://doi.org/10.1016/s0254-0584(02)00466-2
16. Musskaya O. N., Kulak A. I., Krut’ko V. K., Lesnikovich Yu. A., Kazbanov V. V., Zhitkova N. S. Preparation of bioactive mesoporous calcium phosphate granules. Inorganic Materials, 2018, vol. 54, no. 2, pp. 117-124. https://doi.org/10.1134/s0020168518020115
17. Combes C., Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta biomaterialia, 2010, vol. 6, no. 9, pp. 3362-3378. https://doi.org/10.1016/j.actbio.2010.02.017
18. Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, vol. 27, no. 15, pp. 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
19. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research, 2002, vol. 62, no. 4, pp. 600-612. https://doi.org/10.1002/jbm.10280
20. Petrov I., Soptrajanov B., Fuson N., Lawson J. R. Infra-red investigation of dicalcium phosphates. Spectrochimica Acta Part A: Molecular Spectroscopy, 1967, vol. 23, no. 10, pp. 2637-2646. https://doi.org/10.1016/0584-8539(67)80155-7
21. Tas A. C., Bhaduri S. B. Chemical processing of CaHPO^ 2H2O: its conversion to hydroxyapatite. Journal of American Ceramic Society, 2004, vol. 87, no. 12, p. 2195-2200. https://doi.org/10.1111/j.1151-2916.2004.tb07490.x
22. Correa T. H. A., Holanda J. N. F. Calcium pyrophosphate powder derived from avian eggshell waste, Ceramica, 2016, vol. 62, no. 363, pp. 278-280. https://doi.org/10.1590/0366-69132016623631986
23. Petrova M. A., Shitova V. I., Mikirticheva G. A., Popova V. F., Malshikov A. E. New data on Zn2P2O7 phase transformations. Journal of Solid State Chemistry, 1995, vol. 119, no. 2, pp. 219-223. https://doi.org/10.1016/0022-4596(95)80035-n
24. Sakae T., Nakada H., LeGeros J. P. Historical review of biological apatite crystallography. Journal of Hard Tissue Biology, 2015, vol. 24, no. 2, pp. 111-122. https://doi.org/10.2485/jhtb.24.111
25. Dorozhkin S. V. Calcium orthophosphates (CaPO4): occurrence and properties. Progress in biomaterials, 2016, vol. 5, no. 1, pp. 9-70. https://doi.org/10.1007/s40204-015-0045-z
26. Lide D. R. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 89th ed, CRC press, 2008-2009.
27. Fahami A., Beall G. W., Betancourt T. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite. Materials Science and Engineering: C, 2016, vol. 59, pp. 78-85. https://doi.org/10.1016/j.msec.2015.10.002
28. Hitmi N., LaCabanne C., Young R. A. OH- reorientability in hydroxyapatites: effect of F- and Cl-. Journal of Physics and Chemistry of Solids, 1988, vol. 49, no. 5, pp. 541-550. https://doi.org/10.1016/0022-3697(88)90065-0
29. Durst R. A., Staples B. R. Tris/Tris^ HCl: a standard buffer for use in the physiologic pH range. Clinical Chemistry, 1972, vol. 18, no. 3, pp. 206-208. https://doi.org/10.1093/clinchem/18.3.206
30. Bell L. C., Posner A. M., Quirk J. P. The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. Journal of Colloid and Interface Science, 1973, vol. 42, no. 2, pp. 250-261. https://doi.org/10.1016/0021-9797(73)90288-9
31. Barros L. A. F., Ferreira E. E., Peres A. E. C. Floatability of apatites and gangue minerals of an igneous phosphate ore. Minerals Engineering, 2008, vol. 21, no. 12-14, pp. 994-999. https://doi.org/10.1016/j.mineng.2008.04.012
32. Hokkanen S., Repo E., Westholm L. J., Lou S., Sainio T., Sillanpaa M. Adsorption of Ni2+, Cd2+, PO43- and NO3-from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chemical Engineering Journal, 2014, vol. 252, pp. 64-74. https://doi.org/10.1016/j.cej.2014.04.101
33. Schrodter K., Bettermann G., Staffel T., Wahl F., Klein T., Hofmann T. Phosphoric acid and phosphates, Ullmann’s encyclopedia of industrial chemistry, 2000. https://doi.org/10.1002/14356007.a19_465.pub3
34. Vignoles M., Bonel G., Young R. A. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Calcifiedtissueinternational, 1987, vol. 40, no. 2, pp. 64-70. https://doi.org/10.1007/bf02555707