5'-Dimethoxytrityl protection group of synthetic oligonucleotide stability in polymerase chain reaction
https://doi.org/10.29235/1561-8331-2020-56-4-457-464
Abstract
Modification of 5'-OH group of nucleic acids by substituents with various physicochemical properties is important for molecular biology. Investigation of symmetric and asymmetric substitution of 5'-hydroxyl of dsDNA by 4,4'-dimetho-xytrityl (DMT) group seems interesting. Symmetric substitution can allow performing a selective ligation of dsDNA assembled from oligonucleotides by polymerase chain reaction as compared to shortened assembly by-products into a plasmid vector. Synthesis of asymmetrically labeled 5'-DMT dsDNA in case of presence of exonuclease specific to 5'-end modifications will allow obtaining a long synthetic ssDNA used for site-specific gene insertion into a genome by CRISPR/Cas9 technique. To conduct such investigations, it is necessary to know whether synthetic 5'-DMT oligonucleotide is stable under PCR conditions. Here we demonstrated by high performance liquid chromatography with UV (260 nm) and mass-spectrometric detection that 5'-DMT group of synthetic oligonucleotide is stable under PCR conditions but the presence of thiol compounds can decrease a yield of 5'-DMT dsDNA. We plan a further research on influence of 5'-DMT group of synthetic DNA on functionality of various enzymes.
Keywords
About the Authors
V. V. ShchurRussian Federation
Veronika Vladimirovna Shchur - Junior Researcher.
5/2, Acad. Kuprevich Str., MinskA. I. Zholnerovich
Russian Federation
Andrei Z. Ivanavich - Student.
5/2, Acad. Kuprevich Str., Minsk
Y. P. Burankova
Russian Federation
Yuliya P. Burankova - Junior Researcher.
5/2, Acad. Kuprevich Str., Minsk
A. V. Yantsevich
Russian Federation
Aleksei V. Yantsevich - Ph. D. (Chemistry), Head of the Laboratory.
5/2, Acad. Kuprevich Str., Minsk
S. A. Usanov
Russian Federation
Sergei A. Usanov - Corresponding Member of the National Academy of Sciences of Belarus, D. S. (Chemistry), Professor, Principal Researcher.
5/2, Acad. Kuprevich Str., Minsk
References
1. Miller G. P., Kool E. T. Versatile 5'-functionalization of oligonucleotides on solid support: amines, azides, thiols, and thioethers via phosphorus chemistry. Journal of Organic Chemistry, 2004, vol. 69, no. 7, pp. 2404-2410. https://doi.org/10.1021/jo035765e
2. Issur M., Bougie I., Despins S., Bisaillon M. Enzymatic synthesis of RNAs capped with nucleotide analogues reveals the molecular basis for substrate selectivity of RNA capping enzyme: impacts on RNA metabolism. PLoS One, 2013, vol. 8, iss. 9, pp. e75310. https://doi.org/10.1371/journal.pone.0075310
3. Manoharan M. RNA interference and chemically modified small interfering RNAs. Current Opinion in Chemical Biology, 2004, vol. 8, iss. 6, pp. 570-579. https://doi.org/10.1016/j.cbpa.2004.10.007
4. Warminski M., Kowalska J., Buck J., Zuberek J., Lukaszewicz M., Nicola C., Kuhn A. N., Sahin U., Darzynkiewicz E., Jemielity J. The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorganic & Medicinal Chemistry Letters, 2013, vol. 23, iss. 13, pp. 3753-3758. https://doi.org/10.1016/j.bmcl.2013.05.001
5. Ziemniak M., Strenkowska M., Kowalska J., Jemielity J. Potential therapeutic applications of RNA cap analogs. Future Medicinal Chemistry, 2013, vol. 5, iss. 10, pp. 1141-1172. https://doi.org/10.4155/fmc.13.96
6. Veneziano R., Shepherd T. R., Ratanalert S., Bellou L., Tao C., Bathe M. In vitro synthesis of gene-length single-stranded DNA. Scientific Reports, 2018, vol. 8, iss. 1, pp. 6548. https://doi.org/10.1038/s41598-018-24677-5
7. Chen F., Pruett-Miller S. M., Huang Y., Gjoka M., Duda K., Taunton J., Collingwood T. N., Frodin M., Davis G. D. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods, 2011, vol. 8, iss. 9, pp. 753-755. https://doi.org/10.1038/nmeth.1653
8. Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F. Multiplex genome engineering using CRISPR/Cas system. Science, 2013, vol. 339, iss. 6121, pp. 819-823. https://doi.org/10.1126/science.1231143
9. Davis L., Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proceedings of the National Academy of Sciences of the USA, 2014, vol. 111, iss. 10, pp. E924-932. https://doi.org/10.1073/pnas.1400236111
10. Simon J. R., Moore P. D. Homologous recombination between single-stranded DNA and chromosomal genes in Sac-charomyces cerevisiae. Molecular and Cellular Biology, 1987, vol. 7, iss. 7, pp. 2329-2334. https://doi.org/10.1128/mcb.7.7.2329
11. Wang L. K., Lima C. D., Shuman S. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO Journal, 2002, vol. 21., iss. 14, pp. 3873-3880. https://doi.org/10.1093/emboj/cdf397
12. Hoffman L. M., Jendrisak J. Heat-labile phosphatase simplifies the preparation of dephosphorylated vector DNA. Gene, 1990, vol. 88, iss. 1, pp. 97-99. https://doi.org/10.1016/0378-1119(90)90064-x
13. OretskayaT. S., Metelev V. G., Romanova E.A., GottikhM. B. Synthetic nucleic acids. Obtaining and perspectives of therapeutic application. Moscow, MSU Publ., 2015. 102 p. (in Russian).
14. Gilar M., Bouvier E. S. P. Purification of crude DNA oligonucleotides by solid-phase extraction and reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 2000, vol. 890, iss. 1, pp. 167-177. https://doi.org/10.1016/s0021-9673(00)00521-5
15. Shchur V. V., Burankova Y. P., Shapira M. A., Klevzhits D. V., Usanov S. A., Yantsevich A. V. Programmed assembly of long DNA synthons: design, mechanism, and online monitoring. Applied Microbiology and Biotechnology, 2019, vol. 103, iss. 21-22, pp. 9103-9117. https://doi.org/10.1007/s00253-019-10099-4
16. Kreutzian T., Waldheim M., Jackson A., Hoppe M., Mokler V., Eidenmueller D., Hill K. Characterization of Synthetic Oligonucleotides Using Agilent LC/MS Systems. Agilent Technologies. 2009. Available at: https://www.gimitec.com/file/5990-3539EN.pdf. (accessed 18 September 2020).
17. Sierzchala A. B., Dellinger D. J., Betley J. R., Wyrzykiewicz T. K., Yamada C. M., Caruthers M. H. Solid-Phase Oligodeoxynucleotide Synthesis: A Two-Step Cycle Using Peroxy Anion Deprotection. Journal of the American Chemical Society, 1998, vol. 125 , iss. 44, pp. 13427-13441. https://doi.org/10.1021/ja030376n