Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Thermal properties of cellulose-chitosan composite fibers

https://doi.org/10.29235/1561-8331-2020-56-4-473-481

Abstract

Cellulose-chitosan composite fibers were obtained by the method of wet spinning from joint solutions in phosphoric acid. Thermogravimetry (TG), differential thermogravimetry (DTG) and differential scanning calorimetry (DSC) methods have been used to evaluate their thermal properties in the range of 20-600 °C in air atmosphere. It was found that the temperature of the maximum decomposition rate of composite fibers lies between the temperatures characteristic of individual components. It is shown that the addition of chitosan to cellulose leads to an increase in the mass of the carbon residue and gives the cellulosic fibers a self-extinguishing property. The observed effect is explained by the uniform distribution of cellulose and chitosan macromolecules and their aggregates separated by interphase layers in each other, in which a net of interpenetrating segments of both polymer macromolecules is represented. This provides the incombustibility for composite fibers with a chitosan content of more than 20 % and maintaining the integrity of the fibers after processing them with a solvent of chitosan-acetic acid.

About the Authors

T. A. Savitskaya
Belarusian State University
Russian Federation

Tatsiana A. Savitskaya - Ph. D. (Chemistry), Associate Professor.

14, Leningradskaya Str., 220006, Minsk



N. G. Tsygankova
Research Institute for Physical Chemical Problems
Russian Federation

Nadzeia G. Tsyhankova - Ph. D. (Chemistry), Leading Researcher.

14, Leningradskaya Str., 220006, Minsk



S. E. Makarevich
Research Institute for Physical Chemical Problems
Russian Federation

Svetlana E. Makarevich - Senior Researcher.

14, Leningradskaya Str., 220006, Minsk



D. D. Grinshpan
Research Institute for Physical Chemical Problems
Russian Federation

Dzmitry D. Hrynshpan - D. Sc. (Chemistry), Professor, Head of the Laboratory.

14, Len-ingradskaya Str., 220006, Minsk



O. A. Ivashkevich
Research Institute for Physical Chemical Problems
Russian Federation

Oleg A. Ivashkevich - Academician, D. Sc. (Chemistry), Chief Researcher.

14, Leningradskaya Str., 220006, Minsk


References

1. Sanandiya N. D. Large-scale additive manufacturing with bioinspired cellulosic materials. Scientific Reports. 2018, vol. 8, no. 1. https://doi.org/10.1038/s41598-018-26985-2

2. Strnad S., Sauperl О., Fras-Zemljic L. Cellulole fibres functionalized. Biopolymers. London, UK: InTechOpen, 2010, pp. 181-200. https://doi.org/10.5772/10262

3. Janjic S., Kostic M., Vucinic V., Dimitrijtvic S., Popovic K., Ristic M., Srundric P. Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydrate Polymers. 2009, vol. 78, no. 2. pp. 240-246. https://doi.org/10.1016/j.carb-pol.2009.03.033

4. Dutta P. K., Ravikumar M. N. V., Dutta J. Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 2002, vol. 42, pp. 307-354. https://doi.org/10.1081/mc-120006451

5. Shih C. M., Shieh Y. T., Twu Y. K. Preparation and characterization of cellulose/chitosan blend films. Carbohydrate Polymers, 2009, vol. 78, pp.169-174. https://doi.org/10.1016/j.carbpol.2009.04.031

6. Wendler F., Meister F., Wawro D., Wesolowska E., Ciechanska D., Saake B., Puls J., Le Moigne N., Navard P. Polysaccharide Blend Fibres Formed from NaOH, N-Methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibres and Textiles in Eastern Europe, 2010, vol. 18, no. 2, pp. 21-30.

7. Fernandes S. C., Freire C. S. R., Silvestre A. J. D., Neto С. P., Gandini A. Novel materials based on chitosan and cellulose. Polymer International, 2011, vol. 60, no. 6, pp. 875-882. https://doi.org/10.1002/pi.3024

8. Blackburn R. S. Biodegradable and sustainable fibres. Boca Raton: CRS Press, 2005. 414 p. https://doi.org/10.1533/9781845690991

9. Parmar M. S., Sisodea N., Sonee N. Comparative Study on Dyeing Behavior of Crabyon and Viscose Rayon Fibres. International Journal of Engineering Research and Technology, 2013, vol. 2, no. 12, pp. 2338-2331.

10. Hrynshpan D. D., Gonchar A. N., Savitskaya T. A., Tsygankova N. G., Makarevich S. E. Regenerated cellulose fiber production from cellulose solutions in orthophosphoric acid. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2014, no. 2, pp. 115-118 (in Russian).

11. Grinshpan D. D., Savitskaya T. A., Gonchar A. N., Tsygankova N. G., Makarevich S. V., Vovk V. I. A method of obtaining a molded cellulosic material. Patent ЕА no. 026035. Publ. date 28 February 2017 (in Russian).

12. Grinshpan D. D., Savitskaya T. A., Tsygankova N. G., Makarevich S. V., Serebryakov G. F., Kostyukevich V. V. A method of obtaining molded products from solutions of cellulose and its mixtures with chitosan. Patent ЕА no. 029929. Publ. date 28 February 2017 (in Russian).

13. Schwenker R., L. R. Beck Jr. Study of the pyrolitic decomposition of cellulose by gas chromatography. Journal Polymer Sciense. Part C, 1963, vol. 1, no. 2. pp. 331-340. https://doi.org/10.1002/polc.5070020133

14. Grinshpan D. D., Savitskaya T. A., Gonchar A. N., Tsygankova N. G., Makarevich S. V., Vovk V. I. Cellulose-based self-extinguishing material and method for producing it. Patent ЕА no. 028893. Publ. Date 31 January 2018 (in Russian).


Review

Views: 549


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)