Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Preparation of microfiltration ceramic membranes

https://doi.org/10.29235/1561-8331-2021-57-1-25-32

Abstract

The main factors affecting the physicochemical properties of microfiltration ceramic membranes based on natural quartz sand were studied. It was found that samples of large-porous ceramics with a content of 11.0 wt. % of the aluminosilicate binder and 10.0 wt. % of the burning additive are characterized by average pore size of 22±3.02 µm, water capacity of 54±5.0 m3/(h×m2×bar), and tensile strength of 9.0±0.6 bar. The optimal conditions for membrane layers coating were determined, which allowed obtaining microfiltration ceramic membranes with average pore size of 2.3±0.2 µm, water capacity of 26±1.0 m3/(h×m2×bar) and tensile strength of 6.5±0.3 bar.

About the Author

A. I. Ivanets
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Andrei I. Ivanets - D. Sc. (Chemistry), Associate Professor, Leading Researcher. Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus.
9/1, Surganov Str., 220072, Minsk.



References

1. Ceramic-based membranes for water and wastewater treatment / Z. He [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. - 2019. - Vol. 578. - P. 123513. https://doi.org/10.1016/j.colsurfa.2019.05.074

2. Goswami, K. P. Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: A review / K. P. Goswami, G. Pugazhenthi // Journal of Environmental Management. - 2020. - Vol. 268. - P. 110583. https://doi.org/10.1016/j.jenvman.2020.110583

3. Ceramic nanocomposite membranes and membrane fouling: A review / C. Li [et al.] // Water Research. - 2020. -Vol. 175. - P. 115674. https://doi.org/10.1016/j.watres.2020.115674

4. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature / T. Plisko [et al.] // Journal of Membrane Science. - 2018. - Vol. 565. - P. 266-280. https://doi.org/10.1016/j.memsci.2018.08.038

5. Каграманов, Г. Г. Керамические мембраны с селективными слоями на основе SiO2, TiO2 и ZrO2 / Г. Г. Каграманов, В. В. Назаров // Стекло и керамика. - 2001. - № 5. - C. 12-14.

6. Emani, S. Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes / S. Emani, R. Uppaluri, M. K. Purkait // Desalination. - 2014. - Vol. 341. - P. 61-71. https://doi.org/10.1016/j.desal.2014.02.030

7. Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization / L. Li [et al.] // Journal of Hazardous Materials. - 2015. - Vol. 287. - P. 188-196. https://doi.org/10.1016/j.jhazmat.2015.01.011

8. Glass frit sealing method for macroscopic defects in Pd-based composite membranes with application in catalytic membrane reactors / S.T.B. Lundin [et al.] // Separation and Purification Technology. - 2017. - Vol. 172. - P. 68-75. https://doi.org/10.1016/j.seppur.2016.07.041

9. High-performance macro-porous alumina-mullite ceramic membrane supports fabricated by employing coarse alumina and colloidal silica / J. Ma [et al.] // Ceramics International. - 2019. - Vol. 45, N 14. - P. 17946-17954. https://doi.org/10.1016/j.ceramint.2019.06.012

10. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as poreforming agent / J. Liu [et al.] // Ceramics International. - 2016. - Vol. 42. - P. 8221-8228. https://doi.org/10.1016/j.ceramint.2016.02.032

11. Ohji, T. Macro-porous ceramics: processing and properties / T. Ohji, M. Fukushima // International Materials Review. -2013. - Vol. 57. - P. 115-131. https://doi.org/10.1179/1743280411y.0000000006

12. Permeability Asymmetry in Composite Porous Ceramic Membranes / I. M. Kurcharov [et al.] // Physics Procedia. -2015. - Vol. 72. - P. 156-161. https://doi.org/10.1016/j.phpro.2015.09.045

13. Ivanets, A. I. Ceramic microfiltration membranes based on natural silica / A. I. Ivanets, V. E. Agabekov // Petroleum Chemistry. - 2017. - Vol. 57. - P. 117-126. https://doi.org/10.1134/s0965544117020037

14. Preparation and properties of microfiltration membranes based on natural crystalline SiO2 / A. I. Ivanetset [et al.] // Ceramics International. - 2014. - Vol. 40. - P. 12343-12351. https://doi.org/10.1016/j.ceramint.2014.04.080

15. Effect of phase composition of natural quartz raw material on characterization of microfiltration ceramic membranes / A. I. Ivanets [et al.] // Ceramics International. - 2016. - Vol. 42. - P. 16571-16578. https://doi.org/10.1016/j.ceramint.2016.07.077

16. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in water emulsion / J. Fang [et al.] // Desalination. - 2013. - Vol. 311. - P 113-126. _https://doi.org/10.1016/j.desal.2012.11.008

17. Brock, T. D. Membrane Filtration / T. D. Brock. - Springer-Verlag Berlin Heidelberg, 1983. - 381 p. https://doi.org/10.1007/978-3-662-08650-6_

18. Samaei, S. M. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: A review / S. M. Samaei, S. Gato-Trinidad, A. Altaee // Separation and Purification Technology. - 2018. -Vol. 200. - P. 198-220. https://doi.org/10.1016/j.seppur.2018.02.041


Review

Views: 488


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)