Peg derivatives for the synthesis of water-soluble cyanine dye Cy5
https://doi.org/10.29235/1561-8331-2021-57-1-41-47
Abstract
An effective method for the preparation of water-soluble cyanine dye Cy5 using the soluble polymers supported liquid-phase organic synthesis (LPOS) was proposed. Poly (ethylene glycol) methyl ether with a molecular weight of 2000 was used as a polymer substrate, which allowed us to simplify the characterization of products at intermediate stages of synthesis by NMR spectroscopy. This approach makes it easy to obtain the necessary cyanine dyes, which are widely used as fluorescent labels and are popular modifying reagents in biochemistry and medicine.
About the Authors
T. P. SeviarynchykBelarus
Tatsiana P. Seviarynchyk - Junior Researcher. Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.
13, Surganov Str., 220072, Minsk.
Dz. V. Tsaulouski
Belarus
Dzmitry V. Tsaulouski - Researcher. Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.
13, Surganov Str., 220072, Minsk.
O. L. Sharko
Belarus
Olga L. Sharko - Leading Researcher. Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.
13, Surganov Str., 220072, Minsk.
V. V. Shmanai
Belarus
Vadim V. Shmanai - Ph. D. (Chemistry), Head of the Laboratory. Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus.
13, Surganov Str., 220072, Minsk.
References
1. Wang L., Fan J., Qiao X., Peng X., Dai B., Wang B., Sun S., Zhang L., Zhang Y. Novel asymmetric Cy5 dyes: Synthesis, photostabilities and nigh sensitivity in protein fluorescence labiling. Journal of photochemistry and Photobiology A:Chemistry, 2010, vol. 210, pp. 168-172. https://doi.org/10.1016/j.jphotochem.2010.01.002
2. Gerasov A., Shandura M., Kovtun Y., Losytskyy M., Negrutska V., Dubey I. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye. Analytical Biochemistry, 2012, vol 420, pp. 115-120. https://doi.org/10.1016/j.ab.2011.09.018
3. Farzan V. M., Aparin I. O., Veselova O. A., Podkolzin A. T., Shipulin G. A., Korshun V. A., Zatsepin T. S. Cy5/BHQ dye-quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity. Analytical Methods, 2016, vol. 8, pp. 5826-5831. https://doi.org/10.1039/C6AY01304J
4. Saikiran M., Sato D., Pandey S. S., Ohta T., Hayase S., Kato T. Photophysical characterization and BSA interaction of the direct ringcarboxy functionalized unsymmetrical NIR cyanine dyes. Dyes and Pigments, 2017, vol. 140, pp. 6-13. https://doi.org/10.1016/j.dyepig.2017.01.015
5. Braselmann E., Palmer A. E. A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells. Nature Chemical Biology. Nature Chemical Biology, 2018, vol. 14(10), pp.964-971. https://doi.org/10.1016/bs.mie.2020.03.004
6. Maklakova S. Yu., Naumenko V. A., Chuprov A. D., Mazhuga M. P., Zyk N. V., Beloglazkina E. K., Majouga A. G. Cellular uptake of N-acetil-D-galactosamine-, N-acetil-D-glucosamine- and D-mannose-containing fluorescent glycoconjugates investigated by liver intravital microscopy. Carbohydrate Research, 2020, vol. 489, pp. 107928-107933. https://doi.org/10.1021/acs.jmedchem.5b01948
7. Park H., Gladstone M., Shanley C., Goodrich R., Guth A. A novel cancer immunotherapy utilizing autologous tumour tissue. Vox Sanguinis, 2020, pp. 1-11. https://doi.org/10.1111/vox.12935
8. Azad M. S., Okuda M., Cyrenne M., Bourge M., Heck M.-P., Yoshizawa S., Fourmy D. Fluorescent Aminoglycoside Antibiotics and Methods for Accurately Monitoring Uptake by Bacteria. ACS Infectious Diseases, 2020, vol. 6, pp. 1008-1017. https://doi.org/10.1021/acsinfecdis.9b00421
9. Markova L. I., Fedyunyayeva I. A., Povrozin Y., Semenova O. M., Khabuseva S. U., Terpetschnig E., Patsenker L. Water soluble indodicarbocyanine dyes based on 2,3-dimethyl-3-(4-sulfobutyl)-3H-indole-5-sulfonic acid. Dyes and Pigments, 2013, vol. 96, pp.535-546. https://doi.org/10.1016/j.dyepig.2012.09.007
10. Jiang, L., Dou L., Li B. An efficient approach to the synthesis of water-soluble cyanine dyes using poly(ethylene glycol) as a soluble support. Tetrahedron Letters, 2007, vol. 48, pp. 5825-5829. https://doi.org/10.1016/j.tetlet.2007.06.060
11. Mason S. J., Balasubramanian S. Solid-Phase Catch, Activate, and Release Synthesis of Cyanine dyes. Organic Letters, 2002, vol. 4, pp. 4261-4264. https://doi.org/10.1021/ol026836j
12. Mason S. J., Hake J. L., Nairne J., Cummins W. J., Balasubramanain S. Solid-Phase Method for the Synthesis of Cyanine Dyes. The Journal of Organic Chemistry, 2005, vol. 70, pp. 2939-2949. https://doi.org/10.1021/jo0479415
13. Jiang L.-L., Li B.-L., Lv F.-T., Dou L.-F., Wang L.-C. Synthesis of PEG derivatives bearing aminophenol and their application for liquid-phase synthesis of water-soluble unsymmetrical cyanine dyes. Tetrahedron, 2009, vol. 65, pp. 5257-5264. https://doi.org/10.1016/j.tet.2009.04.086
14. Dong Jin, Young Soo, Jong Joo, Jin Woo, Ki Won. Cyanine compound for labeling biomolecule and preparation method thereof: pat. no. US20120095187. Publ. date 02.04.2010.
15. Lavorato S. N., Duarte M. C., Lage D. P., Tavares C. A. P., Coelho E. A. F., Alves R. J. Synthesis and antileishmanial activity of 1,3-bis(aryloxy)propan-2-amines. Medicinal Chemistry Research, 2017, vol. 26, pp. 1052-1072. https://doi.org/10.1007/s00044-017-1805-1