Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Chemical modification of different compounds with nitrogen-containing heterocycles

https://doi.org/10.29235/1561-8331-2021-57-3-356-384

Abstract

Heterocyclic compounds have an extremely important practical application, since many heterocycles are the basis of the most valuable medicinal substances, both natural (vitamins, enzymes, alkaloids, etc.) and synthetic biologically active compounds. The work mainly considers the most relevant directions for various purposes drugs search by modifying known bioactive natural, organoelement and framework compounds with 1,2-azole, oxazole, oxadiazole, thiazole, triazole, pyridine, pyrimidine heterocycles over the past 10 years. Chemical modification makes it possible to increase the water solubility of the compounds, which is important when choosing the pathways for the most rational drug introduction into the body, to reduce the toxicity of the corresponding substances, to increase the breadth of the therapeutic action, and also to give new valuable medicinal properties, thus significantly expanding their application in medicine and agriculture.

About the Authors

E. A. Akishina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Ekaterina A. Akishina – Postgraduate student, Junior Researcher

13, Surganov Str., 220072, Minsk 



Е. А. Dikusar
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Evgenij A. Dikusar – Ph. D. (Chemistry), Senior Researcher

13, Surganov Str., 220072, Minsk 



References

1. Lahlou M. The Success of Natural Products in Drug Discovery. Pharmacology & Pharmacy, 2013, vol. 4, pp. 17–31. https://doi.org/10.4236/pp.2013.43A003

2. Cridge B. J., Larsen L., Rosengren R. J. Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncology Discovery, 2013, vol. 1, no. 6, pp. 1–9. https://doi.org/10.7243/2052-6199-1-6

3. Khor P. Y., Mohd Aluwi M. F. F., Rullah K., Lam K. W. Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. European Journal of Medicinal Chemistry, 2019, vol. 183, no. 111704. https://doi.org/10.1016/j.ejmech.2019.111704

4. Zavarzin I. V. Chertkova V. V., Levina I. S., Chernoburova E. I. Steroids fused to heterocycles at positions 16, 17 of the D-ring. Russian Chemical Reviews, 2011, vol. 80, no. 7, pp. 661–682. https://doi.org/10.1070/rc2011v080n07abeh004169

5. Ibrahim-Ouali M., Dumur F. Recent syntheses of steroidal derivatives containing heterocycles. Arkivoc, 2019, no. 1, pp. 304–339. https://doi.org/10.24820/ark.5550190.p010.988

6. Moniera M., El-Mekabaty A., Abdel-Latif D., Doğru B., Khaled M., Elattar M. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids, 2019, vol. 154, pp. 108548–108598. https://doi.org/10.1016/j.steroids.2019.108548

7. Kritchenkov A. S., Skorik Yu. A. Click reactions in chitosan chemistry. Russian Chemical Bulletin, 2017, vol. 66, no. 5, pp. 769–781 .https://doi.org/10.1007/s11172-017-1809-5

8. Dikusar E. A., Potkin V. I., Kozlov N. G. Vanillin benzaldehydes. Synthesis of derivatives, application and biological activity. Saarbrücken, Deutschland, LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012. 612 p. (in Russian).

9. Gulsia O. Vanillin: One Drug, Many Cures. Resonance, 2020, vol. 25, no. 7, pp. 981–986. https://doi.org/10.1007/s12045-020-1013-z

10. Stockmann P., Gozzi M., Kuhnert R., Sárosi M. B., Hey-Hawkins E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chemical Society Reviews, 2019, vol. 48, pp. 3497–3512. https://doi.org/10.1039/C9CS00197B

11. Babin V. N., Belousov Yu. A., Borisov V. I., Gumenyuk V. V., Nekrasov Yu. S., Ostrovskaya L. A., Sviridova I. K., Sergeeva N. S., Simenel A. A., Snegur L. V. Ferrocenes as potential anticancer drugs. Facts and hypotheses. Russian Chemical Bulletin, 2014, vol. 63, no. 11, pp. 2405–2422. https://doi.org/10.1007/s11172-014-0756-7

12. Snegur L. V., Simenel A. A., Rodionov A. N., Boev V. I. Ferrocene modification of organic compounds for medicinal applications. Russian Chemical Bulletin, 2014, vol. 63, no. 1, pp. 26–36. https://doi.org/10.1007/s11172-014-0390-4

13. Peter S., Aderibigbe B. A. Ferrocene-Based Compounds with Antimalaria/Anticancer Activity. Molecules, 2019, vol. 24, no. 19, pp. 3604–3631. https://doi.org/10.3390/molecules24193604

14. Kolesnik I. A., Dikusar Е. А. Heterocycles derivatives of metallocenes. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus, Chemical series, 2017, no. 4, pp. 107–125 (in Russian).

15. Nedunchezhian K., Aswath N., Thiruppathy M., ThirugnanamurthyS. Boron Neutron Capture Therapy - A Literature Review. Journal of Clinical and Diagnostic Research. 2016, vol. 10, no. 12. pp. 1–4. https://doi.org/10.7860/jcdr/2016/19890.9024

16. Kon’kov S. A., Moiseev I. K., Zemtsova M. N., Bormasheva K. M. Synthesis of heterocyclic systems based on monoand dicarbonyl adamantane derivatives. Russian Chemical Reviews, 2014, vol. 83, no. 5, pp. 377–390. https://doi.org/10.1070/RC2014v083n05ABEH004374

17. Alsamydai A., Jaber N. Pharmacological aspects of curcumin: review article. International Journal of Pharmacognosy, 2018, vol. 5, no. 6, pp. 313–326. https://doi.org/10.13040/IJPSR.0975-8232.IJP.5(6).313-26

18. Gul P., Bakht J. Antimicrobial activity of turmeric extract and its potential use in food industry. Journal of Food Science and Technology, 2015, vol. 52, no. 4, pp. 2272–2279. https://doi.org/10.1007/s13197-013-1195-4

19. Mbese Z., Khwaza V., Aderibigbe B. A. Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers. Molecules, 2019, vol. 24, no. 23, pp. 4386–4409. https://doi.org/10.3390/molecules24234386

20. Xiang D.-B., Zhang K.-Q., Yan Q.-Z., Shi Z., Tuo Q.-H., Lin L.-M., Xia B.-H., Wu P., Liao D.-F., Zeng Y.-L. Curcumin From a controversial “panacea” to effective antineoplastic products. Medicine (Baltimore), 2020, vol. 99, no. 2, pp. e18467. https://doi.org/10.1097/md.0000000000018467

21. Sanidad K. Z., Zhu J., Wang W., Du Z., Zhang G. Effects of Stable Degradation Products of Curcumin on Cancer Cell Proliferation and Inflammation. Journal of Agricultural and Food Chemistry, 2016, vol. 64, no. 2, pp. 9189–9195. https://doi.org/10.1021/acs.jafc.6b04343

22. Chainoglou E., Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and Hybrids. International Journal of Molecular Sciences, 2020, vol. 21, no. 6, pp. 1975–2031. https://doi.org/10.3390/ijms21061975

23. Noorafshan A., Soheil A. E. A Review of Therapeutic Effects of Curcumin. Current Pharmaceutical Design, 2013, vol. 19, no. 11, pp. 2032–2046. https://doi.org/10.2174/1381612811319110006

24. Prasad S., Tyagi A.K., Aggarwal B. B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment, 2014, vol. 46, no. 1, pp. 2–18. https://doi.org/10.4143/crt.2014.46.1.2

25. Ahsan M. J., Khalilullah H., Yasmin S., Jadav S. S., Govindasamy J. Synthesis, Characterisation, and In Vitro Anticancer Activity of Curcumin Analogues Bearing Pyrazole/Pyrimidine Ring Targeting EGFR Tyrosine Kinase. BioMed Research International, 2013, pp. 1–14. https://doi.org/10.1155/2013/239354

26. Borik R., Fawzy N., Abu-Bakr S., Aly M. Design, Synthesis, Anticancer Evaluation and Docking Studies of Novel Heterocyclic Derivatives Obtained via Reactions Involving Curcumin. Molecules, 2018, vol. 23, no. 6, pp. 1398–1416. https://doi.org/10.3390/molecules23061398

27. Agarwal S., Agarwal D. Kr., Gandhi D., Goyal K., Goyal P. Multicomponent One-pot Synthesis of Substituted 4H-pyrimido [2,1-b] [1,3] Benzothiazole Curcumin Derivatives and Their Antimicrobial Evaluation. Letters in Organic Chemistry, 2018, vol. 15, no. 10, pp. 863–869. https://doi.org/10.2174/1570178615666180326161710

28. Qiu P., Xu L., Gao L., Zhang M., Wang S., Tong S., Sun Y., Zhang L., Jiang T. Exploring pyrimidine-substituted curcumin analogues: Design, synthesis and effects on EGFR signaling. Bioorganic & Medicinal Chemistry, 2013, vol. 21, no. 17, pp. 5012–5020. https://doi.org/10.1016/j.bmc.2013.06.053

29. Chen H., Chen L., Wang L., Zhou X., Chan J.Y.-W., Li J., Cui G., Lee S. M.-Y. Synergistic effect of fenretinide and curcumin for treatment of non-small cell lung cancer. Cancer Biology & Therapy, 2016, vol. 17, no. 10, pp. 1022–1029. https://doi.org/10.1080/15384047.2016.1219810

30. Akishina E. A., Dikusar E. A., Petkevich S. K., Potkin V. I. Synthesis of isoxazole and isothiazole derivatives of curcumin. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemiсаl series, 2020, vol. 56, no. 2, pp. 187–191 (in Russian). https://doi.org/10.29235/1561-8331-2020-56-2-187-191

31. He Y.-C., He L., Khoshaba R., Lu F.-G., Cai C., Zhou F.-L., Liao D.-F., Cao D. Curcumin Nicotinate Selectively Induces Cancer Cell Apoptosis and Cycle Arrest through a P53-Mediated Mechanism. Molecules, 2019, vol. 24, no. 22, pp. 4179–4193. https://doi.org/10.3390/molecules24224179

32. Khajeh Dangolani S., Panahi F., Khalafi-Nezhad A. Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles. Molecular Diversity, 2020. https://doi.org/10.1007/s11030-020-10104-3

33. Shioorkar M. G., Ubale M. B. Silica Catalyst Promoted One-Pot Synthesis of 4-[(Dialkylamino)methyl]-1,7-diphenylhepta-1,6-diene-3,5-dione. Asian Journal of Chemistry, 2017, vol. 29, no. 6, pp. 1249–1252. https://doi.org/10.14233/ajchem.2017.20447

34. Kálai T., Kuppusamy M. L., Balog M., Selvendiran K., Rivera B. K., Kuppusamy P., Hideg K. Synthesis of N-Substituted 3,5-Bis(arylidene)-4-piperidones with High Antitumor and Antioxidant Activity. Journal of Medicinal Chemistry, 2011, vol. 54, no. 15, pp. 5414–5421. https://doi.org/10.1021/jm200353f

35. Burmudžija A., Ratković Z., Muškinja J., Janković N., Ranković B., Kosanić M., Đorđević S. Ferrocenyl based pyrazoline derivatives with vanillic core: synthesis and investigation of their biological properties. RSC Advances, 2016, vol. 6, no. 94, pp. 91420–91430. https://doi.org/10.1039/c6ra18977f

36. Kletskov A. V., Potkin V. I., Dikusar E. A., Zolotar R. M. New Data on Vanillin-Based Isothiazolic Insecticide Synergists. Natural Product Communications, 2017, vol. 12, no. 1, pp. 105–106. https://doi.org/10.1177/1934578X1701200130

37. Govindasami T., Pandey A., Palanivelu N., Pandey A. Synthesis, Characterization and Antibacterial Activity of Biologically Important Vanillin Related Hydrazone Derivatives. International Journal of Organic Chemistry, 2011, vol. 1, pp. 71–77. https://doi.org/10.4236/ijoc.2011.13012

38. Bohl M., Duax W. L. Molecular structure and biological activity of steroids. Boca Raton, CRC Press, 1992. 483 p.

39. Bryce A., Ryan C. J. Development and clinical utility of abiraterone acetate as an androgen synthesis inhibitor. Clinical Pharmacology & Therapeutics, 2012. vol. 91, no. 1, pp. 101–108. https://doi.org/10.1038/clpt.2011.275

40. Vasaitis T. S., Njar V. C. Novel, potent anti-androgens of therapeutic potential: recent advances and promising developments. Future Medicinal Chemistry, 2010, vol. 2, no. 4, pp. 667–680. https://doi.org/10.4155/fmc.10.14

41. Dutta M., Saikia P., Gogoi S., Boruah C. R. Microwave-promoted and Lewis acid catalysed synthesis of steroidal A- and D-ring fused 4,6-diarylpyridines. Steroids, 2013, vol. 78, no. 4, pp. 387–395. https://doi.org/10.1016/j.steroids.2013.01.006

42. Shekarrao K., Nath D., Kaishap P. P., Gogoi S., Boruah C. R. Palladium-catalyzed multi-component synthesis of steroidal A- and D-ring fused 5,6-disubstituted pyridines under microwave irradiation. Steroids, 2013, vol. 78, no. 11, pp. 1126–1133. https://doi.org/10.1016/j.steroids.2013.08.002

43. Ali A., Asif M., Alam P., Jane Alam M., Asif Sherwani M. Hasan Khan R. Ahmad S., Shamsuzzaman. DFT/B3LYP calculations, in vitro cytotoxicity and antioxidant activities of steroidal pyrimidines and their interaction with HSA using molecular docking and multispectroscopic techniques. Bioorganic Chemistry, 2017, vol. 73, pp. 83–99. https://doi.org/10.1016/j.bioorg.2017.06.001

44. Zhang B.-L., Song L.-X., Li Y.-F., Li, Y.-L., Guo Y.-Z., Zhang E., Liu H.-M. Synthesis and biological evaluation of dehydroepiandrosterone-fused thiazole, imidazo[2,1-b]thiazole, pyridine steroidal analogues. Steroids, 2014, vol. 80, pp. 92–101. https://doi.org/10.1016/j.steroids.2013.12.003

45. Romero-Hernández L. L., Merino-Montiel P., Meza-Reyes S., Vega-Baez J. L., López Ó., Padrón J. M., Montiel-Smith S. Synthesis of unprecedented steroidal spiro heterocycles as potential antiproliferative drugs. European Journal of Medicinal Chemistry, 2018, vol. 143, pp. 21–32. https://doi.org/10.1016/j.ejmech.2017.10.063

46. Banday A. H., Shameem S. A., Jeelani S. Steroidal pyrazolines and pyrazoles as potential 5α-reductase inhibitors: Synthesis and biological evaluation. Steroids, 2014, vol. 92, pp. 13–19. https://doi.org/10.1016/j.steroids.2014.09.004

47. Cui J., Liu L., Zhao D., Gan C., Huang X., Xiao Q., Qi B., Yang L., Huang Y. Synthesis, characterization and antitumor activities of some steroidal derivatives with side chain of 17-hydrazone aromatic heterocycle. Steroids, 2015, vol. 95, pp. 32–38. https://doi.org/10.1016/j.steroids.2015.01.002

48. Mótyán G., Mérai L., Kiss M.A., Schelz Z., Sinka I., Zupkó I., Frank É. Microwave-assisted synthesis of biologically relevant steroidal 17-exo-pyrazol-5’-ones from a norpregnene precursor by a side-chain elongation/heterocyclization sequence. Beilstein Journal of Organic Chemistry, 2018, vol. 14, pp. 2589–2596. https://doi.org/10.3762/bjoc.14.236

49. Kotovshchikov Y. N., Latyshev G. V., Beletskaya I. P., Lukashev N. V. Regioselective Approach to 5-Carboxy- 1,2,3-triazoles Based on Palladium-Catalyzed Carbonylation. Synthesis, 2018, vol. 50, no. 9, pp. 1926–1934. https://doi.org/10.1055/s-0036-1591896

50. Kurita K., Ikeda H., Shimojoh M., Yang J. N-Phthaloylated Chitosan as an Essential Precursor for Controlled Chemical Modifications of Chitosan: Synthesis and Evaluation. Polymer Journal, 2007, vol. 39, no. 9, pp. 945–952.https://doi.org/10.1295/polymj.pj2007032

51. Shagdarova B. Ts. Preparation of alkylated and acylated chitosan derivatives and study of their biological properties. Moscow, 2016. 134 p. (in Russian).

52. El-Naggar M. M., S. A. Haneen D., B. M. Mehany A., Khalil M. T. New synthetic chitosan hybrids bearing some heterocyclic moieties with potential activity as anticancer and apoptosis inducers. International Journal of Biological Macromolecules, 2019, vol. 150, pp. 1323–1330. https://doi.org/10.1016/j.ijbiomac.2019.10.142

53. Kritchenkov A. S., Egorov A. R., Artemjev A. A., Kritchenkov I. S., Volkovab O. V., Kiprushkina E. I., Zabodalova L. A., Suchkova E. P., Yagafarov N. Z., Tskhovrebov A. G., Kurliukh A. V., Shakola T. V., Khrustalev V. N. Novel heterocyclic chitosan derivatives and their derived nanoparticles: Catalytic and antibacterial properties. International Journal of Biological Macromolecules, 2020, vol. 149, pp. 682–692. https://doi.org/10.1016/j.ijbiomac.2019.12.277

54. Mi Y., Zhanga J., Chen Y., Sun X., Tan W., Li Q., Guo Z. New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydrate Polymers, 2020, vol. 249, pp. 116847– 116855. https://doi.org/10.1016/j.carbpol.2020.116847

55. Makarenkov A. V. Synthesis of carborane nitrogen-containing heterocycle. Moscow, 2013. 181 p. (in Russian).

56. Ol’shevskaya V. A., Makarenkov A. V., Kononova E. G., Petrovskii P. V., Verbitskiy E. V., Rusinov G. L., Charushin V. N., Hey-Hawkins E., Kalinin V. N. Novel bis[(1,2,3-triazolyl)methyl]carborane derivatives via regiospecific copper-catalyzed 1,3-dipolar cycloaddition. Polyhedron, 2012, vol. 42, no. 1, pp. 302–306. https://doi.org/10.1016/j.poly.2012.05.036

57. Ol’shevskaya V., Makarenkov A., Kononova E., Petrovskii P., Grigoriev M., Kalinin V. Use of carborane carboxylic acids in the synthesis of boronated nitrogen heterocycles. Polyhedron, 2013, vol. 51, no. 1, pp. 235–242. https://doi.org/10.1016/j.poly.2012.12.035

58. Cao K., Zhang C.-Y., Xu T.-T., Wu J., Wen X.-Y., Jiang W.-J., Chen M., Yang J. Synthesis of Polyhedral Borane Cluster Fused Heterocycles via Transition Metal Catalyzed B-H Activation. Molecules, vol. 25, no. 2, pp. 391–402. https://doi.org/10.3390/molecules25020391

59. Chen Y., Au Y. K., Quan Y., Xie Z. Copper catalyzed/mediated direct B–H alkenylation/alkynylation in carboranes. Science China Chemistry, 2019, vol. 62, no. 1, pp. 74–79. https://doi.org/10.1007/s11426-018-9388-3

60. Zhang Y., Sun Y., Lin F., Liu J., Duttwyler S. Rhodium(III)-Catalyzed Alkenylation-Annulation of ncloso-Dodecaborate Anions through Double B−H Activation at Room Temperature. Angewandte Chemie International Edition, 2016. vol. 55, no. 50, pp. 15609–15614. https://doi.org/10.1002/anie.201607867

61. Sun Y., Zhang J., Zhang Y., Liu J., van der Veen S., Duttwyler S. The closo-dodecaborate dianion fused with oxazoles provides 3D diboraheterocycles with selective antimicrobial activity. Chemistry - A European Journal, 2018, vol. 24, no. 41, pp. 10364–10371. https://doi.org/10.1002/chem.201801602

62. Rodionov A. N. Synthesis and properties of heterocyclic ferrocene derivatives. Moscow, 2010. 150 p. (in Russian).

63. Yong J., Lu C., Wu X. Synthesis of isoxazole moiety containing ferrocene derivatives and preliminarily in vitro anticancer activity. Medicinal Chemistry Communications, 2014, vol. 5, no. 7, pp. 968–972. https://doi.org/10.1039/c4md00151f

64. Potkin V. I., Dikusar E. A., Kletskov A. V., Petkevich S. K., Semenova E. A., Kolesnik I. A., Zvereva T. D., Zhukovskaya N. A., Rosentsveig I. B., Levkovskaya G. G., Zolotar R. M. Synthesis of esters of metallocene alcohols and 4,5-dichloroisothiazol-3-carboxylic and 5-arylisoxazole-3-carboxylic acids. Russian Journal of General Chemistry, 2016, vol. 86, no. 2, pp. 338–343. https://doi.org/10.1134/s1070363216020237

65. Potkin V. I., Dikusar E. A., Petkevich S. K., Zvereva T. D., Levkovskaya G. G., Rozentsveig I. B. Synthesis of N’-substituted derivatives of 5-(4-methylphenyl)isoxazole-3-carbohydrazonamide. Russian Journal of General Chemistry, 2016, vol. 86, no. 9, pp. 2059–2066. https://doi.org/10.1134/s1070363216090139

66. Pérez W. I., Soto Y., Ortíz C., Matta J., Meléndez E. Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay. Bioorganic & Medicinal Chemistry, 2015, vol. 23, no. 3, pp. 471–479. https://doi.org/10.1016/j.bmc.2014.12.023

67. Kletskov A. V., Kolesnik I. A., Dikusar E. A., Zhukovskaya N. A., Potkin V. I. Synthesis of new ferrocene derivatives with a 4,5-dichloroisothiazole fragment. Russian Journal of General chemistry, 2017, vol. 87, no. 6, pp. 1167–1171. https://doi.org/10.1134/S107036321706010X

68. Akishina E. A., Kazak D. V., Dikusar Е. А., Alekseev R. S., Bumagin N. A., Potkin V. I. Synthesis of acridine, bisacridine and quinoline derivatives with 1,2-azole, pyridine and ferrocene fragments. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemiсаl series, 2020, vol. 56, no 4, pp. 445–456 (in Russian). https://doi.org/10.29235/1561-8331-2020-56-4-445-456

69. Kumar S. S. Synthesis and antimicrobial screening of some novel ferrocenyl derivatives of pyrazole analogues. International journal of research in pharmacy and chemistry, 2014, vol. 4, no. 2, pp. 473–478.

70. Ren S.-Z., Wang Z.-C., Zhu D., Zhu X.-H., Shen F.-Q., Wu S.-Y., Chen J.-J., Xu Ch., Zhu H.-L. Design, synthesis and biological evaluation of novel ferrocenepyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 2018, vol. 157, pp. 909–924. https://doi.org/10.1016/j.ejmech.2018.08.048

71. Damljanovic I., Vukicevic M., Radulovic N., Palic R., Ellmerer E., Ratkovic Z., Joksovic M. D., Vukicevic R. D. Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorganic & Medicinal Chemistry Letters, 2009, vol. 19, no. 4, pp. 1093–1096. https://doi.org/10.1016/j.bmcl.2009.01.006

72. Anfimov P. M. Activity of azolo-adamantanes against influenza virus. Saint-Petersburg, 2011. 118 p. (in Russian).

73. Garaev T. M., Odnovorov A. I., Kirillova E. S., Burtseva E. I., Finogenova M. P., Mukasheva E. A., Grebennikova T. V. Adamantan derivatives capable of inhibiting the reproduction of a Rimantadine resistant strain of influenza A(H1N1) pdm09 virus (Influenza A virus, Alphainfluenzavirus, Orthomyxoviridae). Voprosy Virusologii = Problems of Virology, 2020, vol. 65, no. 1, pp. 16–20 (in Russian). https://doi.org/10.36233/0507-4088-2020-65-1-16-20

74. Klimochkin Y. N., Shiryaev V. A., Leonova M. V. Antiviral properties of cage compounds. New prospects. Russian Chemical Bulletin, 2015, vol. 64, no. 7, pp. 1473–1496. https://doi.org/10.1007/s11172-015-1035-y

75. Moiseev I. K., Kon’kov S. A., Ovchinnikov K. A., Kilyaeva N. M., Bormasheva K. M., Nechaeva O. N., Leonova M. V., Klimochkin Yu. N., Balakhnin S. M., Bormotov N. I., Serova O. A., Belanov E. F. Synthesis and antiviral activity of new adamantane derivatives. Pharmaceutical Chemistry Journal, 2012, vol. 45, no. 10, pp. 588–592. https://doi.org/10.1007/s11094-012-0686-3

76. Lebedev A. V., Lebedeva A. B., Sheludyakov V. D., Kovaleva E. A., Ustinova O. L., Kozhevnikov I. B. Synthesis of 3-Substituted Arylpyrazole-4-carboxylic Acids. Russian Journal of General Chemistry, 2005, vol. 75, no. 5, pp. 782– 789. https://doi.org/10.1007/s11176-005-0318-7

77. Zarubaev V. V., Golod E. L, Anfimov P. M, Shtro A. A, Saraev V. V., Gavrilov A. S, Logvinov A. V, Kiselev O. I. Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorganic & Medicinal Chemistry, 2010, vol. 18, no. 2, pp. 839–848. https://doi.org/10.1016/j.bmc.2009.11.047

78. Gavrilov A. S. Acid-catalyzed adamantylation of diazoles. Saint Petersburg, 2004. 131 p. (in Russian).

79. Pavlov D. I., Sukhikh T. S., Potapov A. S. Synthesis of azolyl-substituted adamantane derivatives and their coordination compound. Russian Chemical Bulletin, 2020, vol. 69, no. 10, pp. 1953–1964. https://doi.org/10.1007/s11172-020-2985-2

80. Lysykh B. А. Synthesis of 1-adamantyl-containing heterocyclic compounds based on the reactions of 1,3-dehydroadamantane with azoles and their derivatives and investigation of their properties. Volgograd, 2015. 194 p. (in Russian).


Review

Views: 1298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)