Nanocomposites based on apatitic tricalcium phosphate and autofibrin
https://doi.org/10.29235/1561-8331-2021-57-4-413-423
Abstract
Nanocomposites based on apatitic tricalcium phosphate in an autofibrin matrix were obtained by precipitation at a Ca/P ratio of 1.50, pH 9 and a maturation time from 30 min to 7–14 days. The resorbability of nanocomposites was determined by the composition of calcium phosphates, which, during long-term maturation, formed as the calcium-deficient hydroxyapatite with a Ca/P ratio of 1.66, whereas biopolymer matrix favored the formation of more soluble calcium phosphates with a Ca/P ratio of 1.53–1.59. It was found that the fibrin clot stabilized, along with apatitic tricalcium phosphate, the phase of amorphous calcium phosphate, which after 800 °C was transformed into resorbable α-tricalcium phosphate. Citrated plasma inhibited the conversion of apatitic tricalcium phosphate into stoichiometric hydroxyapatite, which also facilitated the formation of resorbable β-tricalcium phosphate after 800 °C. The combined effect of the maturation time and the biopolymer matrix determined the composition, physicochemical and morphological properties of nanocomposites and the possibililty to control its extent of resorption
About the Authors
I. E. GlazovBelarus
Ilya E. Glazov – Junior Researcher
9/1, Surganova Str., 220072, Minsk, Republic of Belarus
V. K. Krut’ko
Belarus
Valentina K. Krut’ko – Ph. D. (Chemistry), Associate Professor, Head of the Laboratory
9/1, Surganova Str., 220072, Minsk, Republic of Belarus
R. A. Vlasov
Belarus
Roman A. Vlasov – ENT specialist
3, Trostenetskaya Str., 220033, Minsk, Republic of Belarus
O. N. Musskaya
Belarus
Olga N. Musskaya – Ph. D. (Chemistry), Associate Professor, Senior Researcher
9/1, Surganova Str., 220072, Minsk, Republic of Belarus
A. I. Kulak
Belarus
Anatoly I. Kulak – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director
9/1, Surganova Str., 220072, Minsk, Republic of Belarus
References
1. DileepKumar V. G., Santosh M. S., Pornanong A., Krut’ko V. K., Musskaya O. N., Glazov I. E., Reddy N. Review on the Synthesis and Properties of Hydroxyapatite for Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 2021, 03 Oct., pp. 1–29. https://doi.org/10.1080/09205063.2021.1980985
2. Ishikawa K., Ducheyne P., Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. Journal of Material Sciences: Materials in Medicine, 1993, vol. 4, no. 2, pp. 165–168. https://doi.org/10.1007/BF00120386
3. Tsuber V. K., Lesnikovich L. A., Kulak A. I., Trofimova I. V., Petrov P. T., Truhacheva T. V., Kovalenko J. D., Krasil’nikova V. L. Synthesis, identification and impurities detection in bioactive hydroxyapatite. Pharmaseutical Chemistry Journal, 2006, vol. 40, no. 8, pp. 455–458. https://doi.org/10.1007/s11094-006-0151-2
4. Uskoković V. The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Advances, 2015, vol. 5, iss. 46, pp. 36614-36633. https://doi.org/10.1039/C4RA17180B
5. Zhang H., Zhang M. Characterization and thermal behavior of calcium deficient hydroxyapatite whiskers with various Ca/P ratios. Materials Chemistry and Physics, 2011, vol. 126, no. 3, pp. 642–648. https://doi.org/10.1016/j.matchemphys.2010.12.067
6. Nikolenko M. V., Vasylenko K. V., Myrhorodska V. D., Kostyniuk A., Likozar B. Synthesis of calcium orthophosphates by chemical precipitation in aqueous solutions: The effect of the acidity, Ca/P molar ratio, and temperature on the phase composition and solubility of precipitates. Processes, 2020, vol. 8, no 9, p. 1009. https://doi.org/10.3390/pr8091009
7. Martin R. I., Brown P. W. Aqueous formation of hydroxyapatite. Journal of Biomedical Materials Research, 1997, vol. 35, no. 3, pp. 299–308. https://doi.org/10.1002/(SICI)1097-4636(19970605)35:3<299::AID-JBM4>3.0.CO;2-C
8. Destainville A., Champion E., Bernache-Assollant D., Laborde D. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Materials Chemistry and Physics, 2003, vol. 80, no. 1, pp. 269–277. https://doi.org/10.1016/S0254-0584(02)00466-2
9. Carrodeguas R. G., De Aza S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 2011, vol. 7, no. 10, pp. 3536–3546. https://doi.org/10.1016/j.actbio.2011.06.019
10. Combes C., Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomaterialia, 2010, vol. 6, no. 9, pp. 3362–3378. https://doi.org/10.1016/j.actbio.2010.02.017
11. Heughebaert J. C., Montel G. Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate. Calcified Tissue Intermational, 1982, vol. 34, p. S103–S108.
12. Roberts J. E., Heughebaert M., Heughebaert J. C., Bonar L. C., Glimcher M. J., Griffin R. J. Solid state 31 NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate. Calcified Tissue Intermational, 1991, vol. 49, no. 6, pp. 378–382. https://doi.org/10.1007/BF02555846
13. Glazov I. E., Malakhovsky P. O., Krut’ko V. K., Musskaya O. N., Kulak A. I. Electrokinetic properties of colloid calcium phosphate. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2020, vol. 56, no. 4, pp. 419–428 (in Russian). https://doi.org/10.29235/1561-8331-2020-56-4-419-428
14. Noori A., Ashrafi S. J., Vaez-Ghaemi R., Hatamian-Zaremi A., Webster T. J. А review of fibrin and fibrin composites for bone tissue engineering. International journal of nanomedicine, 2017, vol. 12, pp. 4937–4961. https://doi.org/10.2147/IJN.S124671
15. Khodakaram-Tafti A., Mehrabani D., Shaterzadeh-Yazdi H. An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery. Dental Research Journal, 2017, vol. 14, no. 2, pp. 79–86.
16. Ehrenfest D. M. D., Rasmusson L., Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte-and platelet-rich fibrin (L-PRF). Trends in biotechnology, 2009, vol. 27, no. 3, pp. 158–167. https://doi.org/10.1016/j.tibtech.2008.11.009
17. Alam S., Khare G., Kumar K. V. A. A Comparative Study of Platelet-Rich Fibrin and Platelet-Rich Fibrin with Hydroxyapatite to Promote Healing of Impacted Mandibular Third Molar Socket. Journal of Maxillofacial and Oral Surgery, 2020, pp. 1–8. https://doi.org/10.1007/s12663-020-01417-9
18. Le Nihouannen D., Le Guehennec L., Rouillon T., Pilet P., Bilban M., Layrolle P., Daculsi G. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials, 2006, vol. 27, no. 13, pp. 2716–2722. https://doi.org/10.1016/j.biomaterials.2005.11.038
19. Krut’ko V. K., Vlasov R. A., Musskaya O. N., Glazov I. E., Kulak A. I. Hibrid biomaterials based on hydroxyapatite and blood components. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 3, pp. 299–308 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-3-299-308
20. Vlasov R. A., Mel’nik V. F., Merkulova E. P., Krut’ko V. K., Musskaya O. N., Kulak A I., Lesnikovich L. A., Ulasevich S. A. Application of composite materials on the basis of fibrin and hydrogel of hydroxyapatite for rhinoseptoplasty. Otorinolaringologiya. Vostochnaya Evropa = Otorhinolaryngology. Eastern Europe, 2013, vol. 12, no. 3, pp 29–32 (in Russian).
21. Glazov I. E., Vlasov R. A., Krut’ko V. K., Musskaya O. N. Synthesis of composite materials based on calcium phosphates and blood components. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 2, pp. 135–141 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-2-135-141
22. Glazov I. E., Krut’ko V. K., Kulak A. I., Musskaya O. N., Vlasov R. A., Malakhovsky P. O., DileepKumar V. G., Surya P. S., Santosh M. S., Reddy N. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, vol. 27, no. 5, p. 102224. https://doi.org/10.1016/j.mtcomm.2021.102224
23. Musskaya O. N., Kulak A. I., Krut’ko V. K., Lesnikovich Yu. A., Kazbanov V. V., Zhitkova N. S. Preparation of bioactive mesoporous calcium phosphate granules. Inorganic Materials, 2018, vol. 54, no. 2, pp. 117–124. https://doi.org/10.1134/S0020168518020115
24. Ulasevich S. A., Kulak A. I., Krut’ko V. K., Musskaya O. N., Lesnikovich V. K., Safronova T. V. Hydroxyapatite formation under combined treatment of a gel in the secondary maturation stage. Russian Journal of General Chemistry, 2015, vol. 85, no. 1, pp. 1–6. https://doi.org/10.1134/S107036321501001
25. Doebelin N., Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 2015, vol. 48, no. 5, pp. 1573–1580. https://doi.org/10.1107/S1600576715014685
26. Costa-Rodrigues J., Fernandes A., Lopes M. A., Fernandes M. H. Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomaterialia, 2012, vol. 8, no. 3, pp. 1137–1145. https://doi.org/10.1016/j.actbio.2011.11.032
27. Litvinov R. I., Faizullin D. A., Zuev Y. F., Weisel J. W. The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots. Biophysical Journal, 2012, vol. 103, no. 5, pp. 1020–1027. https://doi.org/10.1016/j.bpj.2012.07.046
28. Glazov I. E., Krut’ko V. K., Musskaya O. N., Kulak A. I. Wet synthesis of carbonated hydroxyapatite. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2019, vol. 55, no. 4, pp. 391–399 (in Russian). https://doi.org/10.29235/1561-8331-2019-55-4-391-399
29. Chaair H., Heughebaert J. C., Heughebaert M. Precipitation of stoichiometric apatitic tricalcium phosphate prepared by a continuous process. Journal of Materials Chemistry, 1995, vol. 5, no. 6, pp. 895–899. https://doi.org/10.1039/JM9950500895
30. Glazov I. E., Krut’ko V. K., Musskaya O. N. Wet formation of unsubstituted and carbonated hydroxyapatite. Tezisy dokladov XVIII Mezhdunarodnoi nauchnoi konferencii «Molodezh’ v nauke – 2021» [Abstracts of the XVIII International Scientific Conference “Youth in Science – 2021”]. Minsk, Belaruskaya navuka Publ., 2021, pp. 363–366 (in Russian).
31. Reynolds E. C. Casein phosphopeptide-amorphous calcium phosphate: the scientific evidence. Advances in dental research, 2009, vol. 21, no. 1, pp. 25–29. https://doi.org/10.1177/0895937409335619