Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Расширенный поиск

Сопряжение фосфолиполиза и монооксигеназного катализа

https://doi.org/10.29235/1561-8331-2021-57-4-488-501

Полный текст:

Аннотация

Представлен обзор основных экспериментальных результатов в области исследования взаимодействия in vivo и in vitro ферментных систем, ответственных за метаболизм арахидоновой кислоты. Обсуждаются возможные взаимосвязи на пути ее высвобождения из фосфолипидов (фосфолипазы А2) до превращения (цитохромы Р450) в важнейшие внутриклеточные мессенджеры передачи внешнего сигнала на внутренний «язык клетки».

Об авторе

Н. М. Литвинко
Институт биоорганической химии Национальной академии наук Беларуси
Беларусь

Литвинко Наталья Михайловна – д-р хим. наук, доцент, зав. лаб.

ул. Купревича, 5/2, 220141, Минск, Республика Беларусь



Список литературы

1. Брокерхоф, X. Липолитические ферменты / X. Брокерхоф, Р. Дженсен; пер. с англ. – М.: Мир,1978. – 396 с.

2. Литвинко, Н. М. Эндогенные фосфолипазы А2. Структура и функция / Н. М. Литвинко, М. А.Кисель. – Минск: Навука i тэхніка, 1991. – 270 с.

3. Caro, A. A. Role of cytochrome P450 in phospholipase A2- and arachidonic acidmediated cytotoxicity / A. A. Caro, A. I. Cederbaum // Free Radical Biology & Medicine. – 2006. – Vol. 40, no. 3. – Р. 364–375. https://doi.org/10.1016/j.freeradbiomed.2005.10.044

4. Lewis D. F. V. Guide to Cytochromes P450: Structure and Function / D. F. V. Lewis. – Second Edition. – London: CRC Press, 2001. – 189 р. https://doi.org/10.1201/9780367800956

5. Суtochrome P-450 / eds. К. Ruckpaul, H. Rein. – Berlin: Akademie–Verlag, 1984. –405 р.

6. Hrycay, E. G. Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes / E. G. Hrycay, S. M. Bandiera // Adv. Exp. Med. and Biol. – Springer, Cham, 2015. – Vol. 851. https://doi.org/10.1007/978-3-319-16009-2_1

7. Eling, В. Т. Е. A role for phospholipids in the binding and metabolism of drugs by hepatic microsomes. Use of the fluorescent hydrophobic probe 1-anilinonaphthalene-8-sulphonate / В. Т. Е. Eling, R. P. Diaugustine // Biochem. J. – 1971. – Vol. 123, N 4. – P. 539–549. https://doi.org/10.1042/bj1230539

8. Mouchlis, V. D. Phospholipase A2 catalysis and lipid mediator lipidomics / V. D. Mouchlis, E. A. Dennis // BBA – Molecular and Cell Biology of Lipids. – 2018. – Vol. 1864, N. 6. – P. 766-771. https://doi.org/10.1016/j.bbalip.2018.08.010

9. Kita, Y. Cytosolic phospholipase A2 and lysophospholipid acyltransferases / Y. Kita, H. Shindou, T. Shimizu // BBA – Molecular and Cell Biology of Lipids. – 2018. – Vol. 1864, N. 6. – P. 838-845. https://doi.org/10.1016 bbalip.2018.08.006

10. Kono, N. Platelet-activating factor acetylhydrolases: An overview and update / N. Kono, H. Arai // BBA – Molecular and Cell Biology of Lipids. – 2018. – Vol. 1864, N. 6. – P. 922-931. https://doi.org/10.1016/j.bbalip.2018.07.006

11. Group IID, IIE, IIF and III secreted phospholipase A2s / M. Murakami [et al.] // BBA – Molecular and Cell Biology of Lipids. – 2018. – Vol. 1864, N. 6. – P. 803-818. https://doi.org/10.1016/j.bbalip.2018.08.014

12. Balsinde, J. Phospholipase A2 regulation of arachidonic acid mobilization / J. Balsinde, M. V. Winstead, E. A. Dennis // FEBS Lett. – 2002. – Vol. 531, N 1. – P. 2–6. https://doi.org/10.1016/s0014-5793(02)03413-0

13. Group specific assays that distinguish between the two major types of mammalian phospholipase A2 / H. C. Yang [et al.] // Anal. Biochem. – 1999. – Vol. 269, N 2. – P. 278– 288. https://doi.org/10.1006/abio.1999.4053

14. Arachidonic acid inhibits activity of cloned renal K+ channel, ROMK1. / C. M. Macica [et al.] // Am. J. Physiol. – 1996. – Vol. 271, N 3. – P. F588–F594. https://doi.org/10.1152/ajprenal.1996.271.3.f588

15. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells / D. Kim [et al.] // J. Physiol. – 1995. – Vol. 484, N 3. – P. 643–660. https://doi.org/10.1113/jphysiol.1995.sp020693

16. Arachidonic acid causes cell death through the mitochondrial permeability transition: implications for tumor necrosis factor-a apoptotic signaling / L. Scorrano [et al.] // J. Biol. Chem. – 2001.– Vol. 276, N 15. – P. 12035–12040. https://doi.org/10.1074/jbc.m010603200

17. Arachidonic acid directly activates members of the mitogen-activated protein kinase superfamily in rabbit proximal tubule cells / L. D. Alexander [et al.] // Kidney Int. – 2001. – Vol. 59, N 6. – P. 2039– 2053. https://doi.org/10.1046/j.1523-1755.2001.0590062039.x

18. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology / C. D. Funk // Science. – 2001. – Vol. 294, N. 5548 – P. 1871–1875. https://doi.org/10.1126/science.294.5548.1871

19. Chakraborti, S. Phospholipase A2 isoforms: a perspective / S. Chakraborti // Cell. Signalling. – 2003. – Vol. 15. – P. 637–665. https://doi.org/10.1016/s0898-6568(02)00144-4

20. Cummings, B. S. Phospholipase A2s in cell injury and death / B. S. Cummings, J. Mchowat, R. G. Schnellmann // J. Pharmacol. Exp. Ther. – 2000. – Vol. 294. – P. 793–799.

21. Taketo, M. Phospholipase A2 and apoptosis / M.Taketo, M. Sonoshita // Biochim. Biophys. Acta. – 2002. – Vol. 1585. – P. 72–76. https://doi.org/10.1016/s1388-1981(02)00326-8

22. Ono, K. Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death / K. Ono, S. O. Kim, J. Han // Mol. Cell. Biol . – 2003. – Vol. 23, N 2. – P. 665–676. https://doi.org/10.1128/mcb.23.2.665-676.2003

23. Fas-induced arachidonic acid release is mediated by Ca2+- independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation / G. Atsumi [et al.] // J. Biol. Chem. – 1998. – Vol. 273, N 22. – P. 13870–13877. https://doi.org/10.1074/jbc.273.22.13870

24. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function / A. A. Spector [et al.] // Prog. Lipid Res. – 2004. – Vol. 43, N 1. – P. 55–90. https://doi.org/10.1016/s0163-7827(03)00049-3

25. Capdevila, J. H. Cytochrome P450 and arachidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase / J. H. Capdevila, J. R. Falck, R. C. Harris // J. Lipid Res. – 2000. – Vol. 41, N 2. – P. 163–181. https://doi.org/10.1016/s0022-2275(20)32049-6

26. Yin, H. New insights regarding the autoxidation of polyunsaturated fatty acids / H. Yin, N. A. Porter // Antioxid. Redox Signaling. – 2005. – Vol. 7, no. 1-2. – P. 170–184. https://doi.org/10.1089/ars.2005.7.170

27. Pratt, D. A. Theoretical calculations of carbon– oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids / D. A. Pratt, J. H. Mills, N. A. Porter // J. Am. Chem. Soc. – 2003. – Vol. 125, N 19. – P. 580–591. https://doi.org/10.1021/ja034182j

28. Zangar, R. C. Mechanisms that regulate production of reactive oxygen species by cytochrome P450 / R. C. Zangar, D. R. Davydov, S. Verma // Toxicol. Appl. Pharmacol. – 2004. – Vol. 199, N 3. – P. 316–331. https://doi.org/10.1016/j.taap.2004.01.018

29. Puntarulo, S. Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes / S. Puntarulo, A. I. Cederbaum // Free Radical Biol. Med. – 1998. – Vol. 24, N. 7-8. – P. 1324–1330. https://doi.org/10.1016/s0891-5849(97)00463-2

30. Sacerdoti, D. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology / D. Sacerdoti, A. Gatta, J. C. McGiff // Prostaglandins Other Lipid Mediat. – 2003. – Vol. 72, N 1-2. – P. 51–71. https://doi.org/10.1016/s1098-8823(03)00077-7

31. Potente, M. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27KIP1 / M. Potente, B. Fisslthaler, R. Busse, I. Fleming // J. Biol. Chem. – 2003. – Vol. 278, N 32. – P. 29619–29625. https://doi.org/10.1074/jbc.m305385200

32. Girotti, A. W. Lipid hydroperoxide generation, turnover, and effector action in biological systems / A. W. Girotti // J. Lipid Res. – 1998. – Vol. 39, N 8. – P. 1529–1542. https://doi.org/10.1016/s0022-2275(20)32182-9

33. Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1 / R. M. Laethem [et al.] // J. Biol. Chem. – 1993. – Vol. 268, N 17. – P. 12912–12918. https://doi.org/10.1016/s0021-9258(18)31472-8

34. Ekstrom, G. Rat liver microsomal NADPH supported oxidase activity and lipid peroxidation dependent on ethanolinducible cytochrome P450 (P-450IIE1) / G. Ekstrom, M. Ingelman-Sundberg // Biochem. Pharmacol. – 1989. – Vol. 38, N 8. – P. 1313–1319. https://doi.org/10.1016/0006-2952(89)90338-9

35. Литвинко, Н. М. Влияние фенобарбитала на активность эндогенной растворимой фосфолипазы А в печени. Взаимосвязь с микросомальной гидроксилирующей системой / Н. М. Литвинко, М. А. Кисель // Хим.-фарм. журн. – 1995. – Т. 29, № 6. – C. 19–22.

36. Krikun, G. Effect of chronic ethanol consumption on microsomal lipid peroxidation: role of iron and comparison between controls / G. Krikun, A. I. Cederbaum // FEBS Lett. – 1986. – Vol. 208, N 2. – P. 292–296. https://doi.org/10.1016/0014-5793(86)81035-3

37. Mari, M. CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of glutamylcysteine synthetase / M. Mari, A. I. Cederbaum // J. Biol. Chem. – 2000. – Vol. 275, N 20. – P. 15563–15571. https://doi.org/10.1074/jbc.m907022199

38. Chen, Q. Cytotoxicity and apoptosis produced by cytochrome P450 2E1 in HepG2 cells / Q. Chen, A. I. Cederbaum // Mol. Pharmacol. – 1998. – Vol. 53, no. 4. – P. 638– 648. https://doi.org/10.1124/mol.53.4.638

39. Chen, Q. Cytotoxicity and apoptosis produced by arachidonic acid in HepG2 cells overexpressing human cytochrome P4502E1 / Q. Chen, M. Galleano, A. I. Cederbaum // J. Biol. Chem. – 1997. – Vol. 272, no. 3. – P. 14532–14541. https://doi.org/10.1074/jbc.272.23.14532

40. Wu, D. Cyclosporine A protects against arachidonic acid toxicity in rat hepatocytes: role of CYP2E1 and mitochondria / D. Wu, A. I. Cederbaum // Hepatology. – 2002. – Vol. 35, N 6. – P. 1420–1430. https://doi.org/10.1053/jhep.2002.33639

41. Wu, D. Sodium salicylate increases CYP2E1 levels and enhances arachidonic acid toxicity in HepG2 cells and cultured rat hepatocytes / D. Wu, A. I. Cederbaum // Mol. Pharmacol. – 2001. – Vol. 59, N 4. – P. 795– 805. https://doi.org/10.1124/mol.59.4.795

42. Perez, M. J. Spin trapping agents (TEMPOL and POBN) protect HepG2 cells overexpressing CYP2E1 against arachidonic acid toxicity / M. J. Perez, A. I. Cederbaum // Free Radic. Biol. Med. – 2001. – Vol. 30, no. 7. – P. 734–746. https://doi.org/10.1016/s0891-5849(01)00461-0

43. Martinez, J. Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species / J. Martinez, J. J. Moreno // Arch. Biochem. Biophys. – 2001. – Vol. 392, N 2. – P. 257–262. https://doi.org/10.1006/abbi.2001.2439

44. Rao, G. N. Hydrogen peroxide activation of cytosolic phospholipase A2 in vascular smooth muscle cells / G. N. Rao, M. S. Runge, R. W. Alexander // Biochim. Biophys. Acta. – 1995. – Vol. 1265, N 1. – P. 67–72. https://doi.org/10.1016/0167-4889(95)91997-z

45. Litvinko, N. M. The interaction of phospholipase A2 with oxidized phospholipids at the lipid-water surface with different structural organization / N. M Litvinko, L. A. Skorostetskaya, D. O. Gerlovsky // Chem. Phys. Lipids. – 2018. – Vol. 211. – P. 44–51. https://doi.org/10.1016/j.chemphyslip

46. Литвинко, Н. М. Гидролиз УФ-индуцированного перекисно-окисленного фосфатидилхолина фосфолипазами разной субстратной специфичности / Н. М. Литвинко // Вес. Нац. акад. навук Беларусі. Сер.хім. навук. – 2021. – Т. 57, №2. – С. 195–205. https://doi.org/10.29235/1561-8331-2021-57-2-195-205

47. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19 / M. M Rogero [et al.] // Free Radical Biol. Med. – 2020. – Vol. 156. – P. 190–199. https://doi.org/10.1016/j.freeradbiomed.2020.07.005

48. Литвинко, Н. М. Активность фосфолипаз А2 и С при биохимическом моделировании / Н. М. Литвинко. – Минск: Технопринт, 2003. – 350 с.

49. The comparative study of the phospholipase A2 -catalyzed hydrolysis of phosphatidylcholine and phosphatidylglycerol in the presence of cytochrome P-450 / N. M. Litvinko [et al.] // Synth. Natural Products Biotechnol. – 1985.– Sophia. – Vol. 4. – P. 158–162.

50. Роль цитохрома Р450 в активации гидролиза фосфатидилхолина фосфолипазой А2 / А. А. Ахрем [и др.] // Докл. Акад. наук СССР. – 1986. – T. 286, № 2. – C. 458–461.

51. Герловский, Д. О. Исследование действия цитохрома Р450 3А4 человека на фосфолиполиз в модельной системе / Д. О. Герловский, Н. М. Литвинко, А. В. Янцевич // Химия, структура и функция биомолекул: тез. докл. IV Междунар. конф., Минск, 17–19 октяб. 2012 г. – Минск, 2012. – С. 197.

52. Tappia, P. S. Phospholipases in Health and Disease / P. S. Tappia, N. S. Dhalla. – New York: Springer, 2014. – 410 p. https://doi.org/10.1007/978-1-4939-0464-8

53. Особенности взаимодействия цитохрома Р450 и фосфолипаз А2 разной специфичности, обнаруживаемые КД-спектроскопией / Н. М. Литвинко [и др.] // Докл. Нац. акад. наук Беларуси. – 2016. – Т. 60, № 6. – С. 64–71.


Рецензия

Просмотров: 91


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)