Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Assessment of effects of aluminum solid solution decomposition on geometric structure of Al-Sn-Zn isobar phase diagram

https://doi.org/10.29235/1561-8331-2022-58-2-149-157

Abstract

Three-dimensional (3D) computer model of the Al-Sn-Zn isobaric phase diagram is presented. It is shown that the T-x-y diagram consists of 64 surfaces and 25 phase regions. Features of Al-Zn binary system phase diagram related to decomposition of aluminum solid solution and its influence on geometric structure of liquidus and solidus surfaces in the ternary system, formed by this binary system and tin, are considered. Critical analysis of the published data was carried out and errors in visualization of those fragments of the Al-Zn T-x diagram, in which phase regions are formed with the participation of new aluminum solid solutions, appeared after the decomposition of the initial solid solution, are discussed. To design this 3D model, literary data were used, and the assessment of its quality is based on isopleths and isothermal sections from the same primary sources.

About the Authors

M. D. Parfenova
Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Maria D. Parfenova - Ph. D. student, Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences.

6, Sakhyanova Str., Ulan-Ude, Republic of Buryatia.



V. P. Vorob'eva
Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vera P. Vorob'eva - D. Sc. (Physics-Mathematics), Associate Professor, Leading Researcher, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences.

6, Sakhyanova Str., Ulan-Ude, Republic of Buryatia.



V. I. Lutsyk
Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vasily I. Lutsyk - D. Sc. (Chemistry), Professor, Head of the Computer-aided Materials Design Sector, Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences.

6, Sakhyanova Str., Ulan-Ude, Republic of Buryatia.



References

1. Sidorov V., Drapala J., Uporov S., Sabirzyanov A., Popel P., Kurochkin A., Grushevskij K. Some Physical Properties of Al-Sn-Zn Melts. EPJ Web of Conferences, 2011, vol. 15, 01022. https://doi.org/10.1051/epjconf/20111501022

2. Drapala J., Kostiukova G., Losertova M. Contribution to the aluminum-tin-zinc ternary system. IOP Conf. Series: Materials Science and Engineering, 2017, vol. 266, 012002. https://doi.org/10.1088/1757-899X/266/1/012002

3. Cheng T., Zhang L.-J. Thermodynamic Re-Assessment of the Al-Sn-Zn Ternary System. Journal of Mining and Metallurgy. Section B Metallurgy, 2019, vol. 55, no. 3, pp. 439-449. https://doi.org/10.2298/JMMB190320036C

4. Straumal B., Valiev R., Kogtenkova O., Zieba P., Czeppe T., Bielanska E., Faryna M. Thermal Evolution and Grain Boundary Phase Transformations in Severely Deformed Nanograined Al-Zn Alloys. Acta Materialia, 2008, vol. 56, no. 20, pp. 6123-6131. https://doi.org/10.1016/j.actamat.2008.08.021

5. Massalski T. B. (Ed.). Binary Alloy Phase Diagrams. 2nd ed. ASM International, Metals Park, Ohio, USA, 1996.

6. Dai L. L., Li H. X., Ren Y. P. Thermodynamic Calculation on the Miscibility Gap of FCC-Al Based Solid Solution in the Al-Zn-Cu system. Journal of Alloys & Compounds, 2009, vol. 478, no. 1, pp. 144-146. https://doi.org/10.1016/j.jall-com.2008.11.076

7. Wasiur-Rahman S., Medraj M. A Thermodynamic Description of the Al-Ca-Zn Ternary System. Calphad, 2009, vol. 33, no. 3, pp. 584-598. https://doi.org/10.1016/j.calphad.2009.06.001

8. Dinsdale A., Watson A., Kroupa A., Vrest'al J., Zemanova A., Vi'zdal J. Atlas of Phase Diagrams for Lead-Free Soldering. COST 531. Vol. 1. Brno, Czech Republic: Vydavatelstvi KNIHAR, 2008. 289 p.

9. Dinsdale, A. Kroupa, A. Watson [et al.]. COST MP0602. Handbook of High-Temperature Lead-Free Solders: Atlas of Phase Diagrams. Vol. 1. 2012. 218 p.

10. Watson A. (ed.). COST Action MP0602. Handbook of High-Temperature Lead-Free Solders: Materials Properties. Vol. 2. 2012. 145 p.

11. Kroupa A. (ed.). COST Action MP0602. Handbook of High-Temperature Lead-Free Solders: Group Project Reports. Vol. 3. 2012. 301 p.

12. Hubert-Protopopescu M., Hubert H. Al-Sn-Zn Ternary Phase Diagram Evaluation. Available at: http://materials.springer.com/msi/docs/sm_msi_r_10_012733_01#Fig2

13. El-Salam F. A., Wahab L. A., Nada R. H., Zahran H. Y. Temperature and Dwell Time Effect on Hardness of Al-base Alloys. Journal of Materials Science, 2007, vol. 42, pp. 3661-3669. https: //doi.org/10.1007/s10853-006-1343-6

14. Meengam C., Dunyakul Y., Maunkhau D., Chinarong S. Transient Liquid Phase Bonding of Semi-Solid Netal 7075 Aluminum Alloy using ZA27 Zinc Alloy. Metals, 2018, vol. 8, no. 637, pp. 1-13. https://doi.org/10.3390/met8080637

15. Smetana B., Zla S., Kroupa A., Zaludova M., Drapala J., Burkovic R., Petlak D. Phase Transition Temperature of Sn-Zn-Al System and their Comparison with Calculated Phase Diagrams. Journal of Thermal Analysis & Calorimetry, 2012, vol. 110, no. 1, pp. 369-378. https://doi.org/10.1007/s10973-012-2318-2

16. Demirtas M., Pursek G., Yanar H., Zhang Z. J., Zhang Z. F. Effect of Chemical Composition and Grain Size on RT Superplasticity of Zn-Al Alloys Processed by ECAP. Letters on Materials, 2015, vol. 5, no. 3, pp. 328-334. https://doi.org/1022226/2410-3535-2015-3-328-334

17. Zhu Y. H. General Rule of Phase Decomposition in Zn-Al based Alloys (II) - On Effects of External Stresses on Phase Transformation. Materials Transactions, 2004, vol. 45, no. 11, pp. 3083-3097. https://doi.org/102320/matertrans.45.3083

18. Parfenova M. D., Vorob'eva V. P., Lutsyk V. I. 3D Computer Model of the Ag-Cu-Ni T-x-y Diagram: Verification of Sections in the Atlas of Phase Diagrams for Lead-Free Soldering. Vestsi Natsyyanal'nai akademii navukBelarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2021, vol. 57, no. 1, pp. 15-24. https://doi.org/10.29235/1561-8331-2021-57-1-15-24

19. Xie W., Cava R. J., Miller G. J. Packing of Russian Doll Clusters to Form a Nanometer-Scale CsCl-Type Compound in a Cr-Zn-Sn Complex Metallic Alloy. Journal of Materials Chemistry C, 2017, vol. 5, no. 29, pp. 7215-7221. https://doi.org/10.1039/C7TC01967J

20. Hu J., Yin F., Wang X., Ouyang X. Experimental Investigation and Thermodynamic Description of the Cr-Sn-Zn Ternary System. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, vol. 69, 101758. https://doi. org/10.1016/j.calphad.2020.101758

21. Barros A., Cruz C., Garcia A., Cheung N. Corrosion Behavior of an Al-Sn-Zn Alloy: Effects of Solidification Microstructure Characteristics. Journal of Materials Research and Technology, 2021, vol. 12, pp. 257-263. https://doi.org/10.1016/j.jmrt.2021.02.081

22. Gerashchenkov D. A., Sobolev M. Y., Markov M. A., Gerashchenkova E. Y., Bykova A. D., Krasikov A. V., Makarov A. M. Tribolical Study of Cermet Coatings Al-Sn-Zn-Al2O3 for Friction Couples. Journal of Friction and Wear, 2018, vol. 39, no. 6, pp. 522-527. https://doi.org/10.3103/S106836661806003X


Review

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)