Preview

Известия Национальной академии наук Беларуси. Серия химических наук

Расширенный поиск

Формирование октакальцийфосфата при взаимодействии карбоната кальция и монокальцийфосфата моногидрата в гальваностатических условиях

https://doi.org/10.29235/1561-8331-2022-58-3-263-272

Аннотация

Кальцийфосфатный композит октакальцийфосфат/кальцит получали в водной среде при pH 5–7 из суспензии CaCO3/Ca(H2PO4)2 в гальваностатическом режиме при плотности тока 20 мА/см2 в течение 20 мин. Высушивание при 80 °C без стадии созревания осадка приводило к получению порошка, состоящего из брушита, кальцита и малого количества октакальцийфосфата. Длительное созревание на воздухе (2 мес.) приводило к гидролитической трансформации брушита в октакальцийфосфат, стабилизированный кальцитом. Использование электрического тока позволило увеличить количество октакальцийфосфата в составе композитного порошка с морфологией пластинчатых розеток. Термообработка при 800 °C композитных порошков приводила к формированию α/β-трикальцийфосфата, β-пирофосфата кальция, гидроксиапатита и оксида кальция.

Об авторах

В. К. Крутько
Институт общей и неорганической химии, Национальная академия наук Беларуси
Беларусь

Крутько Валентина Константиновна – кандидат химических наук, доцент, заведующий лабораторией.

Ул. Сурганова, 9/1, 220072, Минск



А. Е. Дорошенко
Институт общей и неорганической химии, Национальная академия наук Беларуси
Беларусь

Дорошенко Анна Евгеньевна – аспирант, младший научный сотрудник.

Ул. Сурганова, 9/1, 220072, Минск



О. Н. Мусская
Институт общей и неорганической химии, Национальная академия наук Беларуси
Беларусь

Мусская Ольга Николаевна – кандидат химических наук, доцент, ведущий научный сотрудник.

Ул. Сурганова, 9/1, 220072, Минск



С. М. Рабчинский
Белорусский государственный университет
Беларусь

Рабчинский Сергей Михайлович – кандидат химических наук, доцент.

Пр-т Независимости, 4, 220030, Минск



А. И. Кулак
Институт общей и неорганической химии, Национальная академия наук Беларуси
Беларусь

Кулак Анатолий Иосифович – академик НАН Беларуси, доктор химических наук, профессор, директор.

Ул. Сурганова, 9/1, 220072, Минск



Список литературы

1. Bucholz, R. Nonallograft osteoconductive bone graft substitutes / R. Bucholz // Clinical Orthopaedics and Related Research. – 2002. – Vol. 395, N 395. – P. 44–52. https://doi.org/10.1097/00003086-200202000-00006

2. Bohner, M. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties / M. Bohner, B. Le Gras Santorini, N. Dobelin // Acta Biomaterialia. – 2020. – Vol. 113. – P. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022

3. Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior / V. Komlev [et al.] // Applied Materials and Interfaces. – 2014. – Vol. 6. – P. 16610–16620. https://doi.org/10.1021/am502583p

4. Композиционные биоматериалы и покрытия на основе нанокристаллического гидроксиапатита / В. К. Крутько [и др.] // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. – 2008. – № 4. – С. 100–105.

5. Suchanek, W. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants / W. Suchanek, M. Yoshimura // Journal of Materials Research and Technology. – 1998. – Vol. 13, N 1. – P. 94–117. https://doi.org/10.1557/JMR.1998.0015

6. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering / J. Venugopal [et al.] // Philosophical Transactions of the Royal Society of London A: Math., Phys. Eng. Sci. – 2010. – Vol. 368, N 1917. – P. 2065–2081. https://doi.org/10.1098/rsta.2010.0012

7. Dosedependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells / T. Anada [et al.] // Tissue Engineering Part A. – 2008. – Vol. 14, N 6. – P. 965–978. https://doi.org/10.1089/tea.2007.0339

8. Osteoclast differentiation induced by synthetic octacalcium phosphate through receptor activator of NF-kappa β ligand expression in osteoblasts / M. Takami [et al.] // Tissue Engineering Part A. – 2009. – Vol. 15, N 12. – P. 3991–4000. https://doi.org/10.1097/00003086-200202000-00006

9. Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials / O. Suzuki // Japanese Dental Science Review. – 2013. – Vol. 49, N 2. – P. 58–71. https://doi.org/10.1097/00003086-200202000-00006

10. Suzuki, O. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials / O. Suzuki, Y. Shiwaku, R. Hamai // Dental Materials Journal. – 2020. – Vol. 39, N 2. – P. 187–199. https://doi.org/10.1097/00003086-200202000-00006

11. Momma, K. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data / K. Momma, F. Izumi // Journal of Applied Crystallography. – 2011. – Vol. 44. – P. 1272–1276. https://doi.org/10.1097/00003086-200202000-00006

12. Lu, X. Theoretical analysis of calcium phosphate precipitation in simulated body fluid / X. Lu, Y. Leng // Biomaterials. – 2005. – Vol. 26 – P. 1097–1108. https://doi.org/10.1097/00003086-200202000-00006

13. Transformation of brushite to hydroxyapatite and effects of alginate additives / S. Uscar [et al.] // Journal of Crystal Growth. – 2017. – Vol. 468. – P. 774–780. https://doi.org/10.1097/00003086-200202000-00006

14. Features of octacalcium phosphate thermolysis / V. I. Putlyaev [et al.] // Refractories and Industrial Ceramics. – 2014. – Vol. 54. – P. 420–424. https://doi.org/10.1097/00003086-200202000-00006

15. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite / O. Suzuki [et al.] // Biomaterials. – 2006. – Vol. 27, N 13. – P. 2671–2681. https://doi.org/10.1097/00003086-200202000-00006

16. Arellano-Jimenez, M. J. Synthesis and hydrolysis of octacalciumphosphate and its characterization by electron microscopy and X-ray diffraction / M. J. Arellano-Jimenez, R. Garcia-Garcia, J. Reyes-Gasga // Journal of Physics and Chemistry of Solids. – 2009. – Vol. 70. – P. 390–395. https://doi.org/10.1097/00003086-200202000-00006

17. Li, Y. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate / Y. Li, W. Weng, K.C. Tam // Acta Biomaterialia. – 2007. – Vol. 3, N 2. – P. 251–254. https://doi.org/10.1097/00003086-200202000-00006

18. In Vitro Transformation of OCP into Carbonate HA Under Physiological Conditions / R. Horvathova [et al.] // Materials Science and Engineering C. – 2008. – Vol. 28, N 8. – P. 1414–1419. https://doi.org/10.1016/j.msec.2008.03.010

19. Liu, Y. Homogeneous octacalcium phosphate precipitation: effect of temperature and pH / Y. Liu, R. M. Shelton, J. E. Barralet // Key Engineering Materials. – 2004. – Vol. 254–256. – P. 79–82. https://doi.org/10.4028/www.scientific.net/KEM.254-256.79

20. Collapsed octacalcium phosphate stabilized by ionic substitutions / E. Boanini [et al.] // Crystal Growth & Design. – 2010. – Vol. 10. – P. 3612–3617. https://doi.org/10.1021/cg100494f

21. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F-ions on apatite/OCP/apatite structure formation / M. Ijima [et al.] // Calcified Tissue International. – 1996. – Vol. 59. – P. 377–384. https://doi.org/10.1007/s002239900143

22. LeGeros, R. Properties of osteoconductive biomaterials: calcium phosphates / R. LeGros // Clinical Orthopaedics and Related Research. – 2002. – Vol. 395. – P. 81–98. https://doi.org/10.1097/00003086-200202000-00009

23. Osteoconduction at porous hydroxyapatite with various pore configurations / B. Chang // Biomaterials. – 2000. – Vol. 21. – P. 1291–1298. https://doi.org/10.1016/S0142-9612(00)00030-2

24. Calcium phosphate-based osteoinductive materials / R. LeGros [et al.] // Chemical Reviews. – 2008. – Vol. 108. – P. 4742–4753. https://doi.org/10.1021/cr800427g

25. Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism / T. Yokoi [et al.] // Bulletin of the Chemical Society of Japan. – 2020. – Vol. 93, N 5. – P. 2671–2681. https://doi.org/10.1246/bcsj.20200031

26. A facile hydrothermal method for synthesis of submillimeter-long octacalcium phosphate and hydroxyapatite as drug carriers with sustained release behaviors / C. Li [et al.] // Advanced Powder Technology. – 2014. – Vol. 25. – P. 1661–1666. https://doi.org/10.1016/j.apt.2014.06.001

27. Ginebra, M. P. Calcium phosphate cements as drug delivery materials / M. P. Ginebra, T. Traykova, J. A. Planell // Advanced Drug Delivery Reviews. – 2012. – Vol. 64. – P. 1090–1110. https://doi.org/10.1016/j.addr.2012.01.008

28. Iijima, M. Roles of fluoride on octacalcium phosphate and apatite formation on amorphous calcium phosphate substrate / M. Iijima, K. Onuma // Crystal Growth & Design. – 2018. – Vol. 18. – P. 2279–2288. https://doi.org/10.1021/acs.cgd.7b01717

29. Zeng, S. Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate / S. Zeng, H. Shi, T. Yu, C. Zhou // Advanced Powder Technology. – 2017. – Vol. 28. – P. 3288–3295. https://doi.org/10.1016/j.apt.2017.10.006

30. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47) [Electronic Resource]. – 2016. – Mode of access: https://www.icdd.com/pdf-2. – Date of access: 15.06.2022.

31. Kovrlija, L. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration / L. Kovrlija, J. Locs, D. Loca // Acta Biomaterialia. – 2021. – Vol. 135. – P. 27–47. https://doi.org/10.1016/j.actbio.2021.08.021


Рецензия

Просмотров: 365


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)