1. Bucholz, R. Nonallograft osteoconductive bone graft substitutes / R. Bucholz // Clinical Orthopaedics and Related Research. - 2002. - Vol. 395, N 395. - P. 44-52. https://doi.org/10.1097/00003086-200202000-00006
2. Bohner, M. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties / M. Bohner, B. Le Gras Santorini, N. Dobelin // Acta Biomaterialia. - 2020. - Vol. 113. - P. 23-41. https://doi.org/10.1016/j.actbio.2020.06.022
3. Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior / V. Komlev [et al.] // Applied Materials and Interfaces. - 2014. - Vol. 6. - P. 16610-16620. https://doi.org/10.1021/am502583p
4. Композиционные биоматериалы и покрытия на основе нанокристаллического гидроксиапатита / В. К. Крутько [и др.] // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. - 2008. - № 4. - С. 100-105.
5. Suchanek, W. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants / W. Suchanek, M. Yoshimura // Journal of Materials Research and Technology. - 1998. - Vol. 13, N 1. - P. 94-117. https://doi.org/10.1557/JMR.1998.0015
6. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering / J. Venugopal [et al.] // Philosophical Transactions of the Royal Society of London A: Math., Phys. Eng. Sci. - 2010. - Vol. 368, N 1917. - P. 2065-2081. https://doi.org/10.1098/rsta.2010.0012
7. Dosedependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells / T. Anada [et al.] // Tissue Engineering Part A. - 2008. - Vol. 14, N 6. - P. 965-978. https://doi.org/10.1089/tea.2007.0339
8. Osteoclast differentiation induced by synthetic octacalcium phosphate through receptor activator of NF-kappa β ligand expression in osteoblasts / M. Takami [et al.] // Tissue Engineering Part A. - 2009. - Vol. 15, N 12. - P. 3991-4000. https://doi.org/10.1097/00003086-200202000-00006
9. Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials / O. Suzuki // Japanese Dental Science Review. - 2013. - Vol. 49, N 2. - P. 58-71. https://doi.org/10.1097/00003086-200202000-00006
10. Suzuki, O. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials / O. Suzuki, Y. Shiwaku, R. Hamai // Dental Materials Journal. - 2020. - Vol. 39, N 2. - P. 187-199. https://doi.org/10.1097/00003086-200202000-00006
11. Momma, K. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data / K. Momma, F. Izumi // Journal of Applied Crystallography. - 2011. - Vol. 44. - P. 1272-1276. https://doi.org/10.1097/00003086-200202000-00006
12. Lu, X. Theoretical analysis of calcium phosphate precipitation in simulated body fluid / X. Lu, Y. Leng // Biomaterials. - 2005. - Vol. 26 - P. 1097-1108. https://doi.org/10.1097/00003086-200202000-00006
13. Transformation of brushite to hydroxyapatite and effects of alginate additives / S. Uscar [et al.] // Journal of Crystal Growth. - 2017. - Vol. 468. - P. 774-780. https://doi.org/10.1097/00003086-200202000-00006
14. Features of octacalcium phosphate thermolysis / V. I. Putlyaev [et al.] // Refractories and Industrial Ceramics. - 2014. - Vol. 54. - P. 420-424. https://doi.org/10.1097/00003086-200202000-00006
15. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite / O. Suzuki [et al.] // Biomaterials. - 2006. - Vol. 27, N 13. - P. 2671-2681. https://doi.org/10.1097/00003086-200202000-00006
16. Arellano-Jimenez, M. J. Synthesis and hydrolysis of octacalciumphosphate and its characterization by electron microscopy and X-ray diffraction / M. J. Arellano-Jimenez, R. Garcia-Garcia, J. Reyes-Gasga // Journal of Physics and Chemistry of Solids. - 2009. - Vol. 70. - P. 390-395. https://doi.org/10.1097/00003086-200202000-00006
17. Li, Y. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate / Y. Li, W. Weng, K.C. Tam // Acta Biomaterialia. - 2007. - Vol. 3, N 2. - P. 251-254. https://doi.org/10.1097/00003086-200202000-00006
18. In Vitro Transformation of OCP into Carbonate HA Under Physiological Conditions / R. Horvathova [et al.] // Materials Science and Engineering C. - 2008. - Vol. 28, N 8. - P. 1414-1419. https://doi.org/10.1016/j.msec.2008.03.010
19. Liu, Y. Homogeneous octacalcium phosphate precipitation: effect of temperature and pH / Y. Liu, R. M. Shelton, J. E. Barralet // Key Engineering Materials. - 2004. - Vol. 254-256. - P. 79-82. https://doi.org/10.4028/www.scientific.net/KEM.254-256.79
20. Collapsed octacalcium phosphate stabilized by ionic substitutions / E. Boanini [et al.] // Crystal Growth & Design. - 2010. - Vol. 10. - P. 3612-3617. https://doi.org/10.1021/cg100494f
21. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F-ions on apatite/OCP/apatite structure formation / M. Ijima [et al.] // Calcified Tissue International. - 1996. - Vol. 59. - P. 377-384. https://doi.org/10.1007/s002239900143
22. LeGeros, R. Properties of osteoconductive biomaterials: calcium phosphates / R. LeGros // Clinical Orthopaedics and Related Research. - 2002. - Vol. 395. - P. 81-98. https://doi.org/10.1097/00003086-200202000-00009
23. Osteoconduction at porous hydroxyapatite with various pore configurations / B. Chang // Biomaterials. - 2000. - Vol. 21. - P. 1291-1298. https://doi.org/10.1016/S0142-9612(00)00030-2
24. Calcium phosphate-based osteoinductive materials / R. LeGros [et al.] // Chemical Reviews. - 2008. - Vol. 108. - P. 4742-4753. https://doi.org/10.1021/cr800427g
25. Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism / T. Yokoi [et al.] // Bulletin of the Chemical Society of Japan. - 2020. - Vol. 93, N 5. - P. 2671-2681. https://doi.org/10.1246/bcsj.20200031
26. A facile hydrothermal method for synthesis of submillimeter-long octacalcium phosphate and hydroxyapatite as drug carriers with sustained release behaviors / C. Li [et al.] // Advanced Powder Technology. - 2014. - Vol. 25. - P. 1661-1666. https://doi.org/10.1016/j.apt.2014.06.001
27. Ginebra, M. P. Calcium phosphate cements as drug delivery materials / M. P. Ginebra, T. Traykova, J. A. Planell // Advanced Drug Delivery Reviews. - 2012. - Vol. 64. - P. 1090-1110. https://doi.org/10.1016/j.addr.2012.01.008
28. Iijima, M. Roles of fluoride on octacalcium phosphate and apatite formation on amorphous calcium phosphate substrate / M. Iijima, K. Onuma // Crystal Growth & Design. - 2018. - Vol. 18. - P. 2279-2288. https://doi.org/10.1021/acs.cgd.7b01717
29. Zeng, S. Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate / S. Zeng, H. Shi, T. Yu, C. Zhou // Advanced Powder Technology. - 2017. - Vol. 28. - P. 3288-3295. https://doi.org/10.1016/j.apt.2017.10.006
30. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47) [Electronic Resource]. - 2016. - Mode of access: https://www.icdd.com/pdf-2. - Date of access: 15.06.2022.
31. Kovrlija, L. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration / L. Kovrlija, J. Locs, D. Loca // Acta Biomaterialia. - 2021. - Vol. 135. - P. 27-47. https://doi.org/10.1016/j.actbio.2021.08.021