Formation of octacalcium phosphate in the interaction of calcium carbonate and monocalcium phosphate monohydrate under galvanostatic conditions
https://doi.org/10.29235/1561-8331-2022-58-3-263-272
Abstract
The calcium phosphate composite octacalcium phosphate / calcite was obtained at pH 5–7 from the CaCO3/Ca(H2PO4)2 aqueous suspension in a galvanostatic mode at a current density of 20 mA/cm2 for 20 min. Drying at 80 °C without the precipitate maturation stage led to a powder formation consisting of brushite, calcite and a small amount of octacalcium phosphate. Prolonged maturation in air for 2 months led to the hydrolytic transformation of brushite into octacalcium phosphate stabilized by calcite. The use of electric current made it possible to increase the amount of octacalcium phosphate in the composite powder with the morphology of lamellar rosettes. Calcination at 800 °C of the composite powders led to the formation of α/β-tricalcium phosphate, β-calcium pyrophosphate, hydroxyapatite, and calcium oxide.
Keywords
About the Authors
V. K. Krut’koBelarus
Krut’ko Valentina K. – Ph. D. (Chemistry), Associate professor, Head of the Laboratory.
9/1, Surganov str., 220072, Minsk
A. E. Doroshenko
Belarus
Doroshenko Anna E. – Ph. D. student, Junior researcher.
9/1, Surganov str., 220072, Minsk
O. N. Musskaya
Belarus
Musskaya Olga N. – Ph. D. (Chemistry), Associate professor, Leading researcher.
9/1, Surganov str., 220072, Minsk
S. M. Rabchynski
Belarus
Rabchinsky Sergey M. – Ph. D. (Chemistry), Associate 0professor.
4, Nezavisimosti ave., 220030, Minsk
A. I. Kulak
Belarus
Kulak Anatoly I. – Academician of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director.
9/1, Surganov str., 220072, Minsk
References
1. Bucholz R. Nonallograft osteoconductive bone graft substitutes. Clinical Orthopaedics and Related Research, 2002, vol. 395, no. 395, pp. 44–52. https://doi.org/10.1097/00003086-200202000-00006
2. Bohner M., Le Gras Santorini B., Dobelin N. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. Acta Biomaterialia, 2020, vol. 113, pp. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022
3. Komlev V., Barinov S., Bozo I., Deev R., Eremin I., Fedotov A., Gurin A., Khromova N., Kopnin P., Kuvshinova E., Mamonov V., Rybko V., Sergeeva N., Teterina A., Zorin V. Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior. Applied Materials and Interfaces, 2014, vol. 6, pp. 16610–16620. https://doi.org/10.1021/am502583p
4. Krut’ko V. K., Kulak A. I., Lesnikovich L. A., Musskaya O. N., Trofimova I. V. Composite biomaterials and coatings based on nanocrystalline hydroxyapatite. Vesci Natsyonal’nai akademii navuk Belarusi. Serya chim. navuk = Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2008, no. 4, pp. 100–105 (in Russian).
5. Suchanek W., Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research and Technology, 1998, vol. 13, no. 1, pp. 94–117. https://doi.org/10.1557/JMR.1998.0015
6. Venugopal J., Prabhakaran M., Zhang Y., Low S., Choon A., Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, vol. 368, no. 1917, pp. 2065–2081. https://doi.org/10.1098/rsta.2010.0012
7. Anada T., Kumagai T., Honda Y., Masuda T., Kamijo R., Kamakura S., Yoshihara N., Kuriyagawa T., Shimauchi H., Suzuk O. Dosedependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Engineering Part A., 2008, vol. 14, no. 6, pp. 965–978. https://doi.org/10.1089/tea.2007.0339
8. Takami M., Mochizuki A., Yamada A., Tachi K., Zhao B., Miyamoto Y., Anada T., Honda Y., Inoue T., Nakamura M., Suzuki O., Kamijo R. Osteoclast differentiation induced by synthetic octacalcium phosphate through receptor activator of NF-kappa β ligand expression in osteoblasts. Tissue Engineering Part A., 2009, vol. 15, no. 12, pp. 3991–4000. https://doi.org/10.1097/00003086-200202000-00006
9. Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. Japanese Dental Science Review, 2013, vol. 49, no. 2, pp. 58–71. https://doi.org/10.1097/00003086-200202000-00006
10. Suzuki O., Shiwaku Y., Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dental Materials Journal, 2020, vol. 39, no. 2, pp. 187–199. https://doi.org/10.1097/00003086-200202000-00006
11. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, vol. 44, pp. 1272–1276. https://doi.org/10.1097/00003086-200202000-00006
12. Lu X., Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 2005, vol. 26, pp. 1097–1108. https://doi.org/10.1097/00003086-200202000-00006
13. Ucar S., Bjornoy S., Bassett D., Strand B., Sikorski P., Andreassen J. Transformation of brushite to hydroxyapatite and effects of alginate additives. Journal of Crystal Growth, 2017, vol. 468. pp. 774–780. https://doi.org/10.1097/00003086-200202000-00006
14. Putlyaev V. I., Kukueva E. V., Safronova T. V., Ivanov V. K., Churagulov B. R. Features of octacalcium phosphate thermolysis. Refractories and Industrial Ceramics, 2014, vol. 54, pp. 420–424. https://doi.org/10.1097/00003086-200202000-00006
15. Suzuki O., Kamakura S., Katagiri T., Nakamura M., Zhao B., Honda Y., Kamijo R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials, 2006, vol. 27, no. 13, pp. 2671–2681. https://doi.org/10.1097/00003086-200202000-00006
16. Arellano-Jimenez M. J., Garcia-Garcia R., Reyes-Gasga J. Synthesis and hydrolysis of octacalciumphosphate and its characterization by electron microscopy and X-ray diffraction. Journal of Physics and Chemistry of Solids, 2009, vol. 70, pp. 390–395. https://doi.org/10.1097/00003086-200202000-00006
17. Li Y., Weng W., Tam K. C. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomaterialia, 2007, vol. 3, no. 2, pp. 251–254. https://doi.org/10.1097/00003086-200202000-00006
18. Horvathova R., Muller L., Helebrant A., Greil P., Muller F. In Vitro Transformation of OCP into Carbonate HA Under Physiological Conditions. Materials Science and Engineering C, 2008, vol. 28, no. 8, pp. 1414–1419. https://doi.org/10.1016/j.msec.2008.03.010
19. Liu Y. R., Shelton M., Barralet J. E. Homogeneous octacalcium phosphate precipitation: effect of temperature and pH. Key Engineering Materials, 2004, vol. 254–256, pp. 79–82. https://doi.org/10.4028/www.scientific.net/KEM.254-256.79
20. Boanini E., Gazzano M., Rubini K., Bigi A. Collapsed octacalcium phosphate stabilized by ionic substitutions. Crystal Growth & Design, 2010, vol. 10, pp. 3612–3617. https://doi.org/10.1021/cg100494f
21. Iijima M., Nelson D., Pan Y., Kreinbrink A., Adachi M., Goto T., Moriwaki Y. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F-ions on apatite/OCP/apatite structure formation. Calcified Tissue International, 1996, vol. 59, pp. 377–384. https://doi.org/10.1007/s002239900143
22. LeGeros R. Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research, 2002, vol. 395, pp. 81–98. https://doi.org/10.1097/00003086-200202000-00009
23. Chang B. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, 2000, vol. 21, pp. 1291–1298. https://doi.org/10.1016/S0142-9612(00)00030-2
24. LeGeros R. Calcium phosphate-based osteoinductive materials. Chemical Reviews, 2008, vol. 108. pp. 4742–4753. https://doi.org/10.1021/cr800427g
25. Yokoi T., Goto T., Kato T., Takahashi S., Nakamura J., Sekino T., Ohtsuki C., Kawashita M. Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bulletin of the Chemical Society of Japan, 2020, vol. 93, no. 5, pp. 2671–2681. https://doi.org/10.1246/bcsj.20200031
26. Li C., Ge X., Li G., Gao Q., Ding R. A facile hydrothermal method for synthesis of submillimeter-long octacalcium phosphate and hydroxyapatite as drug carriers with sustained release behaviors. Advanced Powder Technology, 2014, vol. 25, pp. 1661–1666. https://doi.org/10.1016/j.apt.2014.06.001
27. Ginebra M. P., Traykova T., Planell J. A. Calcium phosphate cements as drug delivery materials. Advanced Drug Delivery Reviews, 2012, vol. 64, pp. 1090–1110. https://doi.org/10.1016/j.addr.2012.01.008
28. Iijima M., Onuma K. Roles of fluoride on octacalcium phosphate and apatite formation on amorphous calcium phosphate substrate. Crystal Growth & Design, 2018, vol. 18, pp. 2279–2288. https://doi.org/10.1021/acs.cgd.7b01717
29. Zeng S., Shi H., Yu T., Zhou C. Enhanced hydrated properties of a-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate. Advanced Powder Technology, 2017, vol. 28, pp. 3288–3295. https://doi.org/10.1016/j.apt.2017.10.006
30. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). 2016. Available at: https://www.icdd.com/pdf-2. (accessed 15 June 2022).
31. Kovrlija L., Locs J., Loca D. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomaterialia, 2021, vol. 135, pp. 27–47. https://doi.org/10.1016/j.actbio.2021.08.021