Natural diketones as potential covalent ligands for SARS-CoV-2 proteins: an in silico docking study
https://doi.org/10.29235/1561-8331-2022-58-3-280-285
Abstract
Our computer-aided protein-ligand docking test using Autodock Vina software allowed to reveal the potential of few α- and β-diketones from plants and alternative living organisms as covalent ligands for few proteins of coronavirus SARS-CoV-2 – a causative agent of COVID-19. It has been established that values for energy of binding (docking score, Ebind, kcal/mol) less than –7.5 and for distances of ligands’ carbonyl groups to side chain nitrogens of arginine residues of some coronaviral enzymes within 0.4 nm have been true for β-diketones 6-gingerdione (Pubchem code CID162952), 8-gingerdione (CID14440537), tetrahydrocurcumine (CID124072) as well as α-diketone wallitaxane E (CID132967478). The in silico revealed interactions are interesting to be verified in vitro and they point out a possibility of investigation of the compounds and related natural materials as tools for struggle against coronaviral infections.
About the Authors
Ya. V. FaletrovBelarus
Faletrov Yaroslav V. – Ph. D. (Chemistry), Associate Professor, doctoral student of the Department of Macromolecular Compounds, Leading Researcher.
14, Leningradskaya str., 220006, Minsk
V. A. Staravoitava
Belarus
Staravoitava Victoryia A. – Research Assistant trainee of the Laboratory of Biochemistry of Medical Drugs.
14, Leningradskaya str., 220006, Minsk
H. I. Pozniak
Belarus
Pozniak Hleb I. – 5th-year Student of the Faculty.
4, Nezavisimosti ave., 220030, Minsk
V. M. Shkumatov
Belarus
Shkumatov Vladimir M. – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Biology), Professor, Head of the Laboratory.
14, Leningradskaya str., 220006, Minsk
References
1. Koryukov M., Kechin A., Shamovskaya D., Timofeeva A., Filipenko M. Do Sputnik V Vaccine-Induced Antibodies Protect Against Seasonal Coronaviruses? Case Study. Viral Immunology, 2022, vol. 35, no. 2, pp. 138–141. https://doi.org/10.1089/vim.2021.0157
2. Rubin E. J., Baden L. R. The Potential of Intentional Drug Development. New England Journal of Medicine, 2022, vol. 386, no. 15, pp. 1463–1464. https://doi.org/10.1056/nejme2202160
3. Davids M. S., Brown J. R. Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncology, 2014, vol. 10, no. 6, pp. 957–967. https://doi.org/10.2217/fon.14.51
4. Shi T.-H., Huang Y.-L., Chen C.-C, Pi W.-C., Hsu Y.-L., Lo L.-C., Chen W.-Y., Fu S.-L., Lin C.-H. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochemical and Biophysical Research Communications, 2020, vol. 533, no. 3, pp. 467–473. https://doi.org/10.1016/j.bbrc.2020.08.086
5. Liu M., Littler D. R., Rossjohn J., Quinn R. J. Binding Studies of the Prodrug HAO472 to SARS-Cov-2 Nsp9 and Variants. ACS Omega, 2022, vol. 7, no. 8, pp. 7327–7332. https://doi.org/10.1021/acsomega.1c07186
6. Mathews J. M., Watson S. L., Snyder R. W., Burgess J. P., Morgan D. L. Reaction of the butter flavorant diacetyl (2,3-butanedione) with n-α-acetylarginine: a model for epitope formation with pulmonary proteins in the etiology of obliterative bronchiolitis. Journal of Agricultural and Food Chemistry, 2010, vol. 58, no. 4, pp. 12761–12768. https://doi.org/10.1021/jf103251w
7. Wanigasekara M. S. K., Huang X., Chakrabarty J. K., Bugarin A., Chowdhury S. M. Arginine-selective chemical labeling approach for identification and enrichment of reactive arginine residues in proteins. ACS Omega, 2018, vol. 3, no. 10, pp. 14229–14235. https://doi.org/10.1021/acsomega.8b01729
8. Leone D.-L., Hubálek M., Pohl R., Sýkorová V., Hocek M. 1,3-Diketone-Modified Nucleotides and DNA for CrossLinking with Arginine-Containing Peptides and Proteins. Angewandte Chemie International Edition, 2021, vol. 60, no. 32, pp. 17383–17387. https://doi.org/10.1002/anie.202105126
9. Osawa T., Namiki M. A Novel Type of Antioxidant Isolated from Leaf Wax of Eucalyptus leaves. Agricultural and Biological Chemistry, 1981, vol. 45, no. 3, pp. 735–739. https://doi.org/10.1080/00021369.1981.10864583
10. Trivedi M. K., Panda P., Sethi K. K., Gangwar M., Mondal S. C., Jana S. Solid and liquid state characterization of tetrahydrocurcumin using XRPD, FT-IR, DSC, TGA, LC-MS, GC-MS, and NMR and its biological activities. Journal of Pharmaceutical Analysis, 2020, vol. 10, no. 4, pp. 334–334. https://doi.org/10.1016/j.jpha.2020.02.005
11. El Demerdash A., Dawidar A. M., Keshk E. M., Abdel-Mogi M. Gingerdione from the rhizomes of Curcuma longa. Chemistry of Natural Compounds, 2012, vol. 48, no. 4, pp. 646–648. https://doi.org/10.1007/s10600-012-0333-y
12. Faletrov Y. V., Frolova N. S., Hlushko H. V., Rudaya E. V., Edimecheva I. P., Mauersberger S., Shkumatov V. M. Evaluation of the fluorescent probes Nile Red and 25-NBD-cholesterol as substrates for steroid-converting oxidoreductases using pure enzymes and microorganisms. FEBS Journal, 2013, vol. 280, no. 13, pp. 3109–3119. https://doi.org/10.1111/febs.12265
13. Trott O., Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 2010, vol. 31, pp. 455–461. https://doi.org/10.1002/jcc.21334
14. Dang P. H., Nguyen H. X., Duong T. T. T., Tran T. K. T., Nguyen P. T., Vu T. K. T., Vuong H. C., Phan N. H. T., Nguyen M. T. T., Nguyen N. T., Awale S. α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of Taxus wallichiana. Journal of Natural Products, 2017, vol. 80, no. 4, pp. 1087–1095. https://doi.org/10.1021/acs.jnatprod.7b00006
15. Zhang Z.-B., Luo D.-D., Xie J.-H., Xian Y.-F., Lai Z.-Q., Liu Y.-H., Liu W.-H., Chen J.-N., Lai X.-P., Lin Z.-X., Su Z.-R. Curcumin’s Metabolites, Tetrahydrocurcumin and Octahydrocurcumin, Possess Superior Anti-inflammatory Effects in vivo Through Suppression of TAK1-NF-κB Pathway. Frontiers in Pharmacology, 2018, vol. 9, pp. 1181. https://doi.org/10.3389/fphar.2018.01181
16. Pan Y., Zhang Y., Yuan J., Ma X., Zhao Y., Li Y., Li F., Gong X., Zhao J., Tang H., Wang J. Tetrahydrocurcumin mitigates acute hypobaric hypoxia-induced cerebral oedema and inflammation through the NF-κB/VEGF/MMP-9 pathway. Phytotherapy Research, 2020, vol. 34, no. 11, pp. 2963–2977. https://doi.org/10.1002/ptr.6724
17. Nemati M., Asl E. R., Pouya F. D., Rasmi Y. Curcumin, an Inhibitor of PAK1, Potential Treatment for COVID-19. Journal of Infectiology, 2020, vol. 3, no. 2, pp. 1-3. https://doi.org/10.29245/2689-9981/2020/2.1160
18. Ardra P., Prachi S., Hariprasad V. R., Babu U. V., Mohamed R., Raghavendra P. R. Potential Phytochemical Inhibitors of the Coronavirus RNA Dependent RNA Polymerase: A Molecular Docking Study. Research Square preprint, 2020. https://doi.org/10.21203/rs.3.rs-35334/v1
19. Putra W. E., Kharisma V. D., Susanto H. Potential of Zingiber officinale bioactive compounds as inhibitory agent against the IKK-B. AIP Conference Proceedings, 2020. https://doi.org/10.1063/5.0002478
20. Wijaya R. M., Hafidzhah M. A., Kharisma V. D., Ansori A. N. M., Parikesit A. A. COVID-19 In silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein. Makara Journal of Science, 2021, vol. 25, no. 3, pp. 162–171. https://doi.org/10.7454/mss.v25i3.1244
21. Jafarzadeh A., Jafarzadeh S., Nematide M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? Journal of Traditional Chinese Medical Sciences, 2021, vol. 8, no. 4, pp. 267–279. https://doi.org/10.1016/j.jtcms.2021.10.001