Thin composite coatings based on gelatin with inorganic nanoparticles
https://doi.org/10.29235/1561-8331-2022-58-3-325-333
Abstract
A technique for the formation of gelatin thin films and composite coatings with silicon dioxide and zinc oxide nanoparticles by spin coating has been developed. New data of the morphology and structural characteristics of the formed gelatin and nanocomposite films were obtained by atomic force microscopy. The dependences of the roughness parameters of composite coatings on the content of silicon dioxide and zinc oxide nanoparticles in the polymer matrix are presented. It has been shown that the introduction of inorganic nanoparticles into the gelatin structure makes it possible to form nanocomposites with a rough surface. It has been established that the silicon dioxide nanoparticles incorporation leads to hydrophobization of the surface of polymer-inorganic films based on gelatin. Modification with zinc oxide nanoparticles (up to 8 mg per 1 mg of gelatin) improves the wettability of nanocomposite coatings with water.
Keywords
About the Authors
D. V. SapsaliouBelarus
Sapsaliou Dmitry V. – Postgraduate student, Teacher.
18, Sovetskaya str., 220030, Minsk
G. B. Melnikova
Belarus
Melnikova Galina B. – Ph. D. (Engineering), Senior Researcher.
15, P. Brovki str., 220072, Minsk
T. N. Tolstaya
Belarus
Tolstaya Tatyana N. – Researcher.
15, P. Brovki str., 220072, Minsk
S. A. Chizhik
Belarus
Chizhik Sergei A. – Academician, D. Sc. (Engineering), Professor, Chief Researcher.
15, P. Brovki str., 220072, Minsk
References
1. Biswas S., Pal A. Application of biopolymers as a new age sustainable material for surfactant adsorption: A brief review. Carbohydrate Polymer Technologies and Applications, 2021, vol. 2, pp. 100145. https://doi.org/10.1016/j.carpta.2021.100145
2. López-Rubio A., Blanco-Padilla A., Oksman K., Mendoza S. Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals. Nanomaterials, 2020, vol. 10, no. 12, pp. 2564. https://doi.org/10.3390/nano10122564
3. Savvin S. B., Kuznetsov V. V., Sheremetyev S. V., Mikhailova A. V. Optical chemical sensors (Micro- and Nanosystems) for analysis of liquids. Russian Journal of General Chemistry, 2008, vol. 78, no. 12, pp. 2418–2429. https://doi.org/10.1134/s1070363208120244
4. Yang Z., Chaieb S., Hemar Y. Gelatin-Based Nanocomposites: A Review. Polymer Reviews, 2021, vol. 61, no. 4, pp. 765–813. https://doi.org/10.1080/15583724.2021.1897995
5. Reshetnyak E. A., Nikitina N. A., Loginova L. P., Mchedlov-Petrosyan N. O., Svetlova N. V. Protolytic and complexing properties of indicators in the gelatin gel medium. Visnik Harkivs’kogo nacional’nogo universitetu. Khіmіya = Kharkov University bulletin. Chemical series, 2005, no. 669, vol. 13(36), pp. 67–82 (in Russian).
6. Reshetnyak E. A., Ivchenko N. V., Nikitina N. A., Pochinok T. B. Indikatornye plenki na osnove zhelatinovogo gelja dlja opredelenija Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Zn(II), Fe(ІІІ), Al(III), Ba(II), Sr(II) i SO42– [Indicator films based on gelatin gel for determination of Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Zn(II), Fe(ІІІ), Al(III), Ba(II), Sr(II) and SO42–]. Metody i ob’ekty himicheskogo analiza = Methods and objects of chemical analysis, 2012, vol. 7, no. 4, pp. 192–201 (in Russian).
7. Bulatova R. R., Bakeeva I. V. Nanocomposite gels. Vestnik MITHT, 2011, vol. 6, no. 1, pp. 3–21 (in Russian).
8. Azizi-lalabadi M., Alizadeh-Sani M., Divband B., Ehsani A., Julian McClements D. Nanocomposite films consisting of functional nanoparticles (TiO2 and ZnO) embedded in 4A-Zeolite and mixed polymer matrices (gelatin and polyvinyl alcohol). Food Research International, 2020, vol. 137, pp. 109716. https://doi.org/10.1016/j.foodres.2020.109716
9. Idumah Igwe C. Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synthetic Metals, 2021, vol. 273, pp. 116674. https://doi.org/10.1016/j.synthmet.2020.116674
10. Tanwar A., Date P., Ottoor D. ZnO NPs incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin. Colloid and Interface Science Communications, 2021, vol. 42, pp. 100413. https://doi.org/10.1016/j.colcom.2021.100413
11. Moniruzzaman M. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 2006, vol. 39, no. 16, pp. 5194–5205. https://doi.org/10.1021/ma060733p
12. Purohit S. D., Bhaskar R., Singh H., Yadav I., Kumar Gupta M., Chandra Mishra N. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 2019, vol. 133, pp. 592–602. https://doi.org/10.1016/j.ijbiomac.2019.04.113
13. Hanemann T., Szabó Hanemann D. V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials, 2010, vol. 3, no. 6, pp. 3468–3517. https://doi.org/10.3390/ma3063468
14. Pan J., Xiao C., Huang Q., Liu H., Zhang T. ECTFE hybrid porous membrane with hierarchical micro/nano-structural surface for efficient oil/water separation. Journal of Membrane Science, 2017, vol. 524, pp. 623–630. https://doi.org/10.1016/j.memsci.2016.11.012
15. Pichumani M., Bagheri P., Poduska K. M., Gonzalez-Vinas W., Yethiraj A. Dynamics, crystallization and structures in colloid spin coating. Soft Matter, 2013, vol. 9, no. 12, pp. 3220. https://doi.org/10.1039/c3sm27455a
16. Rocca-Smith J. R., Pasquarelli R., Lagorce-Tachon A., Rousseau J., Fontaine S., Aguie-Beghin V., Debeaufort F., Karbowiak T. Toward Sustainable PLA-Based Multilayer Complexes with Improved Barrier Properties. ACS Sustainable Chem. Eng, 2019, vol. 7, no. 4, pp. 3759–3771. https://doi.org/10.1021/acssuschemeng.8b04064
17. Herrera M. A., Sirvio J. A., Mathew A. P., Oksman K. Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin- and dip-coating. Materials & Design, 2016, vol. 93, no. 5, pp. 19–25. https://doi.org/10.1016/j.matdes.2015.12.127
18. Parfenov V. A., Yudin I. A. Atomic force microscopy and its applications in science, engineering and restoration. Izvestiya SPbGETU “LETI” = Proceedings of Saint Petersburg Electrotechnical University, 2015, no. 9, pp. 61–70 (in Russian).
19. Pérez-Gutiérrez E., Percino M. J., Chapela V. M., Maldonado J. L. Optical and morphological characterization by atomic force microscopy of luminescent 2-styrylpyridine derivative compounds with Poly(N-vinylcarbazole) films. Thin Solid Films, 2011, vol. 519, no. 18, pp. 6015–6020. https://doi.org/10.1016/j.tsf.2011.04.129
20. Nguyen-Tri P., Ghassemi P., Carriere P., Nanda S., Assadi A. A., Nguyen D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers, 2020, vol. 12, no. 5, pp. 1142. https://doi.org/10.3390/polym12051142
21. Polyotov Ya. A., Bystrov S. G., Kodolov V. I. Issledovanie pljonok polimetilmetakrilata, modificirovannogo sverhmalymi kolichestvami med’/uglerodnyh nanokompozitov, metodom atomnoj silovoj mikroskopii [Investigation of polymethylmethacrylate films modified with supersmall quantities of copper/carbon nanocomposites by atomic force microscopy]. Himicheskaya fizika i mezoskopiya = Chemical Physics and Mesoscopy, 2014, vol. 16, no. 1, pp. 103–108 (in Russian).