Получение, структура и фотокаталитическая активность нанокомпозитов на основе оксида церия
https://doi.org/10.29235/1561-8331-2022-58-4-351-359
Анатацыя
Методом самораспространяющегося высокотемпературного синтеза синтезированы мезопористые порошки СeO2, MgO и нанокомпозиты на их основе, исследовано взаимное влияние оксида магния и оксида церия на кристаллическую структуру, микроструктуру и морфологию полученных материалов. Установлено, что СeO2 формируется на поверхности оксида магния, при этом сохраняется развитая поверхность материала. Установлено, что размеры кристаллитов СеО2 в составе нанокомпозитов изменяются незначительно и составляют от 6,5 до 7,4 нм, а значения удельной поверхности и среднего диаметра пор исследованных образцов зависят от состава и изменяются в диапазонах 19‒41 м2/г и 11,9‒19 нм соответственно. Наибольшая эффективность фотодеградации красителей кислотного телона синего и прямого ярко-голубого наблюдается для образцов MgO–CeO2 (30 мол.%) и MgO–CeO2 (50 мол.%) – 98,5 и 92,5 % соответственно c учетом эффекта прямого фотолитического разложения под воздействием ультрафиолетового излучения.
Аб аўтарах
И. МацукевичБеларусь
Е. Юндель
Беларусь
Н. Кулинич
Беларусь
Ю. Егорова
Беларусь
Л. Кульбицкая
Беларусь
Т. Кузнецова
Беларусь
Спіс літаратуры
1. Oxidation-reduction processes in CeO2-x nanocrystals under UV irradiation / V. K. Klochkov [et al.] //j. Photochem. Photobiol., A: Chemistry. – 2018. – N 364. – P. 1282–287. https://doi.org/10.1016/j.jphotochem.2018.06.025
2. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide / S. Deshpande [et al.] // App. Phys. Lett. – 2005. – N 87. – P. 133113–133113-3. https://doi.org/10.1063/1.2061873
3. Mass diffusion phenomena in cerium oxide/ A. Kabir [et al.] // Cerium Oxide (CeO2): Synth., Properties Applications. – Elsevier, 2020. – C. 169–210. https://doi.org/10.1016/b978-0-12-815661-2.00005-0
4. Characterization and catalytic performance of Cu/CeO2 and Cu/MgO–CeO2 catalysts for NO reduction by CO /j. Chen [et al.] // Appl. Catal., A: General Letters. – 2009. – Vol. 363, N 1-2. – P. 208–215. https://doi.org/10.1016/j.apcata.2009.05.017
5. Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition / T. Tsoncheva [et al.] //j. Colloid Interface Sci. – 2009. – Vol. 333, N 1. – P. 277–284. https://doi.org/10.1016/j.jcis.2008.12.070
6. One-pot hydrothermal synthesis of a novel Pt@CeO2 nanocomposite for water-gas shift reaction / H. Chen [et al.] // Catal. Commun. – 2021. – Vol. 149. – P. 106206–106206-6. https://doi.org/10.1016/j.catcom.2020.106206
7. Нанокомпозиционная керамика на основе оксидов магния, церия и самария / В. В. Вашук [и др.] // Электрохимия. ‒ 2018. ‒ Т. 54, № 12. ‒ С. 1124‒1134. https://doi.org/10.1134/S1023193518140100
8. Influences of Gd2Ti2O7 sintering aid on the densification, ionic conductivity and thermal expansion of Gd0.1Ce0.9O1.95 electrolyte for solid oxide fuel cells / T. Guo [et al.] //j. Power Sources. – 2014. – Vol. 262. – P. 239–244. https://doi.org/10.1016/j.jpowsour.2014.03.07
9. Anion-doped CeO2 for high-performance lithium-sulfur batteries /j. Chen [et al.] // Appl. Surf. Sci. – 2022. – Vol. 584. – P. 152613–152613-3. https://doi.org/10.1016/j.apsusc.2022.152613
10. Improved lithium storage performance of CeO2-decorated SrLi2Ti6O14 material as an anode for Li-ion battery / Y. Li [et al.] //j. Ind. Eng. Chem. – 2021. – Vol. 101. – P. 144–152. https://doi.org/10.1016/j.jiec.2021.06.019
11. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia / Z. Serebrovska [et al.] // Biomed. Pharmacoth. – 2017. – Vol. 92. – P. 69–77. https://doi.org/10.1016/j.biopha.2017.05.064
12. Novel approach for the voltammetric evaluation of antioxidant activity using DPPH -modified electrode / G. Ziyatdinova [et al.] // Electrochim. Acta. – 2017. – Vol. 247. – P. 97–106. https://doi.org/10.1016/j.electacta.2017.06.155
13. Synthesis of ceria nanoparticles in pores of SBA-15: Pore size effect and influence of citric acid addition / N. N. Mikhe eva [et al.] // Microporous Mesoporous Mater. – 2019. – Vol. 277. – P. 10–16. https://doi.org/10.1016/j.micromeso.2018.10.013
14. Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. Cerium Oxide (CeO₂) / M. Bellardita [et al.] // Synth., Properties Applications. – Elsevier, 2020 – P. 109–167. https://doi.org/10.1016/b978-0-12-8156612.00004-9
15. Synthesis different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol– gel method / A. Shalaga Fudala [et al.] // Materials Today: Proceedings. – 2022. – Vol. 49. – Part 7. – P. 2786–2792. https://doi.org/10.1016/j.matpr.2021.09.452
16. Cerium (IV) oxide synthesis and sinterable powders prepared by the polymeric organic complex solution method / P. Duran [et al.] //j. Eur. Ceram. Soc. – 2002. – N 22. – P. 1711–1721. https://doi.org/10.1016/S0955-2219(01)00483-6
17. Synthesis and characterization of CeO2 nanoparticles by hydrothermal method / M. Magdalane [et al.] // Mater. Today: Proceedings. – 2020. – Vol. 36. – Part 2. – P. 130–132. https://doi.org/10.1016/j.matpr.2020.02.283
18. Effect of the CeO2 synthesis method on the behaviour of Pt/CeO2 catalysis for the water-gas shift reaction / L. Pastor- Pérez [et al.] // Int. J. Hydrogen Energy. – 2019. – Vol. 44, N 39. – P. 21837–21846. https://doi.org/10.1016/j.ijhydene.2019.06.206
19. Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2 : Co) nanoparticles by using hydrothermal method / Y. A. Syed Khadar [et al.] //j. Mater. Res. Technol. – 2018. – Vol. 8, N 1. – P. 267–274. https://doi.org/10.1016/j.jmrt.2017.12.005
20. Hydrothermal synthesis of CeO2 nanostructures and their electrochemical properties / A. N. Bugrov [et al.] // Nanosystems: Phys., Chem., Mathem. – 2020. – Vol. 11, N 3. – P. 355–364. https://doi.org/10.17586/2220-8054-2020-11-3-355-364
21. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion / Y. Quan [et al.] //j. Fuel Chem. Technol. – 2021. – Vol. 49, N 2. – P. 211–219. https://doi.org/10.1016/s1872-5813(21)60014-2
22. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation / P. Ji [et al.] // Appl. Catal., B: Environmental. – 2009 – Vol. 82, N 3-4. – P. 148–154. https://doi.org/10.1016/j.apcatb.2008.07.004
23. Banerjee, S. Sinter-active nanocrystalline CeO2 powder prepared by a mixed fuel process: Effect of fuel on particle agglomeration / S. Banerjee, P. S. Devi //j. Nanopart. Res.: Environmental. – 2007. – Vol. 9, N 6. – P. 1097–1107. https://doi.org/10.1007/s11051-006-9204-4
24. Synthesis, structure, and visible-light-driven activity of o-YbFeO3/h-YbFeO3/CeO2 photocatalysts / S. M. Tikhanova [et al.] // Chim. Tech. Acta. ‒ 2021. ‒ Vol. 8, N 4.‒ P. 20218407-1‒20218407-11. https://doi.org/10.15826/chimtech.2021.8.4.07
25. Cam, T. S. Catalytic oxidation of CO over CuO/CeO2 nanocomposites synthesized via solution combustion method: effect of fuels / T. S. Cam, T. A. Vishnievskaia, V. I. Popkov // Rev. Adv. Mater. Sci. ‒ 2020. ‒ Vol. 59. ‒ P. 1-13. https://doi.org/10.1515/rams-2020-0002
26. Zaboeva, E. A. Glycine-Nitrate Combustion Synthesis of CeFeO3-based Nanocrystalline Powders / E. A. Zaboeva, S. G. Izotova, V. I. Popkov // Russ. J.Appl. Chem. ‒ 2016. ‒ Vol. 89, N 8. ‒ P. 1228‒1236. https://doi.org/10.1134/S1070427216080036
27. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card № 00-087-0653.
28. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card № 00-043-1002.