Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

The release of antimony into the atmospheric air on the territory of Belarus: sources, levels and long-term dynamics

https://doi.org/10.29235/1561-8331-2022-58-4-423-432

Abstract

The results of the first assessment of the antimony release into the atmospheric air on the territory of Belarus are discussed. The main anthropogenic sources of antimony emission have been identified, the emission factors have been developed, and the volumes of antimony emission for the period from 1990 to 2020 have been calculated. It is shown that total antimony emissions varied in the range from 1.6 to 5.6 tons per year with maximum values in the early 1990 s, and minimal – in 2000. Antimony emission in 2020 on the territory of the country is estimated at 2.4 t, the contribution of Belarus to global emission is 0.1 %. Decreasing trend of antimony emission over a 30-year period and a change in the contribution of the main sources to total emission have been established. A significant decrease in the contribution of stationary combustion of fuel (from 66 to 14 %) is due to a change in the fuel balance and is accompanied by increase of the contribution of brake wear (from 34 to 61 %). The data obtained can be used to model the transport and dispersion of antimony, to assess health and ecosystems risks, and to develope measures to reduce the releases of antimony into the environment.

About the Authors

S. V. Kakareka
Institute for Nature Management, National Academy of Sciences of Belarus
Belarus

Kakareka Sergey V. – D. Sc. (Engineering), Professor, Head of the Laboratory.

10, Skoriny str., 220076, Minsk



T. I. Kukharchyk
Institute for Nature Management, National Academy of Sciences of Belarus
Belarus

Kukharchyk Tamara I. – D. Sc.(Geography), Associate Professor, Chief Researcher.

10, Skoriny str., 220076, Minsk



References

1. The Agency for Toxic Substances and Disease Registry. The Environmental Protection Agency Toxicological Profile for Antimony and Compounds. U. S. Public Health Service, 2019. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp23.pdf (accessed 15 February 2022).

2. He M., Wang N., Long X., Zhang C., Ma C., Zhong Q., Wang A., Wang Y., Pervaiz A., Shan J.Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. Journal of Environmental Sciences. 2019, vol. 75, pp. 14–39. https://doi.org/10.1016/j.jes.2018.05.023

3. Bolan N., Kumar M., Singh E., Kumar A., Singh L., Kumar S., Keerthanan S., Hoang S. A., El-Naggar A., Vithanage M., Sarkar B., Wijesekara H., Diyabalanage S., Sooriyakumar P., Vinu A., Wang H., Kirkham M. B., Shaheen S. M., Rinklebe J., Siddique K. H. M. Antimony contamination and its risk management in complex environmental settings: A review. Environment International. 2022, vol. 158, 106908. https://doi.org/10.1016/j.envint.2021.106908

4. Jiang J.,Wu Y., Sun G., Zhang L., Li Z., Sommar J., Yao H., Feng X. Characteristics, Accumulation, and Potential Health Risks of Antimony in Atmospheric Particulate Matter. ACS Omega. 2021, vol. 6, no. 14, pp. 9460–9470. https://doi.org/10.1021/acsomega.0c06091

5. U. S. Environmental Protection Agency. National air pollutant emission trends, 1900–1998. 2000. Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/2000ETJA.PDF?Dockey=2000ETJA.PDF (accessed 10 February 2022).

6. Tian H., Zhao D., Cheng K., Lu L., He M.,Hao J.Anthropogenic Atmospheric Emissions of Antimony and Its Spatial Distribution Characteristics in China. Environmental science & technology. 2012, vol. 46, pp. 3973–3980. https://doi.org/10.1021/es2041465

7. Zhang Y., Ding C., Gong D., Deng Y., Huang Y., Zheng J., Xiong S., Tang R., Wang Y., Su L. A review of the environmental chemical behavior, detection and treatment of antimony. Environmental Technology & Innovation. 2021, vol. 24, pp. 102026. https://doi.org/10.1016/j.eti.2021.102026

8. Tian H. Z., Zhou J., Zhu C., Zhao D., Gao J., Hao J., He M., Liu K., Wang K., Hua S. A Comprehensive Global Inventory of Atmospheric Antimony Emissions from Anthropogenic Activities, 1995–2010. Environmental science & technology. 2014, vol. 48, pp. 10235–10241. https://doi.org/10.1021/es405817u

9. Tian H. Z., Zhu C. Y., Gao J. J., Cheng K., Hao J. M., Wang K., Hua S. B., Wang Y., Zhou J. R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmospheric Chemistry and Physics. 2015, vol. 15, pp. 10127–10147. https://doi.org/10.5194/acp-15-10127-2015

10. Li J., Zheng B., He Y., Zhou Y., Chen X., Ruan S., Yang Y., Dai C., Tang L. Antimony contamination, consequences and removal techniques: A review. Ecotoxicology and Environmental Safety. 2018, vol. 156, pp. 125–134. https://doi.org/10.1016/j.ecoenv.2018.03.024

11. Nriagu J. O., Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, vol. 1988333, pp. 134–139. https://doi.org/10.1038/333134a0

12. Mineral commodity summaries 2021. U. S. Geological Survey. 2021. 200 p. https://doi.org/10.3133/mcs2021

13. Pacyna J. M., Pacyna E. G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 2001, vol. 9, no. 4, pp. 269–298. http://doi.org/10.1139/a01-012

14. Zyryanov V. V., Zyryanov D. V. Fly ash is a man-made raw material. Moscow: Maska Publ., 2009. 320 p. (in Russian).

15. Yudovich Ya. E., Ketris М. P. Valuable Trace Elements in Coals. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2006. 538 p. (in Russian).

16. Filby R. H., Olsen S. D. A comparion of INAA and ICP-MS for trace element determination in petroleum geochemistry. Journal of Radioanalytical Chemistry, 1994, vol. 180, pp. 285–294.

17. Iijima A., Sato K., Fujitani Y., Fujimori E., Saito Y., Tanabe K., Ohara T., Kozawa K., Furuta N. Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan. Environmental Chemistry 2009, vol. 6, no. 2, pp. 122–132. http://doi.org/10.1071/EN08107

18. Gómez D. R., Fernanda Gine M., Sanchez Bellato A. C., Smichowski P. Antimony: a traffic-related element in the atmosphere of Buenos Aires, Argentina. Journal of Environmental Monitoring. 2005, vol. 7, pp. 1162−1168. http://doi.org/10.1039/b508609d

19. Bukowiecki N., Lienemann P., Hill M., Figi R., Richard A., Furger M., Rickers K., Falkenberg G., Zhao Y., Cliff S. S., Prevot A. S., Baltensperger U., Buchmann B., Gehrig R. Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles. Environmental Science & Technology. 2009, vol. 43, no. 21, pp. 8072-8. http://doi.org/10.1021/es9006096

20. National Emissions Inventory (NEI). 2022. Available at: https://www.epa.gov/air-emissions-inventories/nationalemissions-inventory-nei (accessed 1 March 2022).

21. Kitto, M. E. Trace-element patters in gasolines for use in source apportionment. Air&Waste,1993, vol. 43, pp. 10. http://doi.org/10.1080/1073161X.193.10467213

22. Iijima A., Sato K., Yano K., Kato M., Kozawa K., Furuta N. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environmental science & technology. 2008, vol. 42, no. 8, pp. 2937–2942. https://doi.org/10.1021/es702137g

23. 2019/2020 Data within Australia – Antimony & compounds from all sources. Available at: http://www.npi.gov.au/npidata/action/load/summary-result/criteria/destination/ALL/substance/10/source-type/ALL/substance-name/Antimony%2B%2526%2Bcompounds/subthreshold-data/Yes/year/2020 (accessed 10 April 2022).

24. Fan J., Wang Y. Atmospheric Emissions of As, Sb, and Se from Coal Combustion in Shandong Province, 2005–2014. Polish Journal of Environmental Studies. 2016, vol. 25, no. 6, pp. 2339–2347. https://doi.org/10.15244/pjoes/63656

25. Zhou J., Tian H., Zhu C., Hao J., Gao J., Wang Y., Xue Y., Hua S., Wang K. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050. Atmospheric Environment, 2015, vol. 120, pp. 385–392. https://doi.org/10.1016/j.atmosenv.2015.09.018

26. Bagherifam S., Brown T. C., Fellows C. M., Naidu R. Bioavailability of Arsenic and Antimony in Terrestrial Ecosystems: A Review. Pedosphere, 2019, vol. 29, no. 6, pp. 681–720. https://doi.org/10.1016/S1002-0160(19)60843-X


Review

Views: 270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)