Теплота сгорания сельскохозяйственной биомассы: базовое значение и интервалы для отдельных видов
https://doi.org/10.29235/1561-8331-2023-59-1-78-88
Анатацыя
Высшая теплота сгорания (ВТС) в пересчете на сухое и oбеззольное состояние (daf) является удобной платформой для сравнения энергоемкости различных видов сельскохозяйственной биомассы. Экспериментально определены ВТС и зольность для 90 образцов соломы, семян, лузги, шрота и т.д. На основании литературных данных рассчитаны значения ВТСdaf для 80 образцов из разных регионов. Предложено базовое значение ВТСdaf сельскохозяйственной биомассы равное 19,6 МДж кг-1 для верификации данных по твердому биотопливу. Установлены интервалы варьирования ВТСdaf для свекловичного жома, соломы, шрота, льнокостры и лузги подсолнечника. Обсуждены отклонения ВТСdaf от базового значения и интервалов варьирования для отдельных видов сельскохозяйственной биомассы.
Аб аўтарах
Ю. МаксимукБеларусь
В. Курсевич
Беларусь
А. Корсакова
Беларусь
М. Антонова
Беларусь
В. Крук
Беларусь
Спіс літаратуры
1. Godin B., Lamaudière S., Agneessens R., Schmit T., Goffart J. P., Stilmant D., Gerin P. A., Delcarte J. Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy and Fuels, 2013, vol. 27, no. 5, pp. 2588–2598. https://doi.org/10.1021/ef3019244
2. Montero G., Coronado M. A., Torres R., Jaramillo B. E., García C., Stoytcheva M., Vázquez A. M., León J. A., Lambert A. A., Valenzuela E. Higher heating value determination of wheat straw from Baja California, Mexico. Energy, 2016, vol. 109, pp. 612–619. https://doi.org/10.1016/j.energy.2016.05.011
3. Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel, 1997, vol. 76, no. 5, pp. 431–434. https://doi.org/10.1016/S0016-2361(97)85520-2
4. Demirbaş A. Relationships between lignin contents and heating values of biomass. Energy Conversion Management, 2001, vol. 42, no. 2, pp. 183–188. https://doi.org/10.1016/S01968904(00)00050-9
5. Naik S., Goud V. V., Rout P. K., Jacobson K., Dalai A. K. Characterization of Canadian biomass for alternative renewable biofuel. Renewable Energy, 2010, vol. 35, no. 8, pp. 1624–1631. https://doi.org/10.1016/j.renene.2009.08.033
6. Gravalos I., Xyradakis P., Kateris D., Gialamas T., Bartzialis D., Giannoulis K. An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Natural Resources, 2016, vol. 7, no. 1, pp. 57–68. https://doi.org/10.4236/nr.2016.71006
7. García R., Pizarro C., Lavín A.G., Bueno J. L. Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 2012, vol. 103, no. 1, pp. 249–258. https://doi.org/10.1016/j.biortech.2011.10.004
8. Suárez J. A., Luengo C. A., Felfli F. F., Bezzon G., Beatón P. A. Thermochemical properties of Cuban biomass. Energy Sources, 2000, vol. 22, no. 10, pp. 851–857. https://doi.org/10.1080/00908310051128156
9. Enes T., Aranha J., Fonseca T., Lopes D., Alves A., Lousada J. Thermal properties of residual agroforestry biomass of Northern Portugal. Energies, 2019, vol. 12, no. 8, pp. 1418. https://doi:10.3390/en12081418
10. Wang X., Yang Z., Liu X., Huang G., Xiao W., Han L. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Management, 2020, vol. 110, pp. 87–97. https://doi.org/10.1016/j.wasman.2020.05.018
11. Singh H., Sapra P. K., Sidhu B. S. Evaluation and characterization of different biomass residues through proximate and ultimate analysis and heating value. Asian Journal Engineering and Applied Technology, 2013, vol. 2, no. 2, pp. 6–10.
12. Prem Ananth Surendran C., Shanmugam P. Correlation between empirical formulae based stoichiometric and experimental methane potential and calorific energy values for vegetable solid wastes. Energy Reports, 2021, vol. 7, pp. 19–31. https://doi.org/10.1016/j.egyr.2020.10.071
13. Adapa P., Tabil L., Schoenau G., Opoku A. Pelleting characteristics of selected biomass with and without steam explosion pretreatment. International Journal Agricultural and Biological Engineering, 2010, vol. 3, no. 3, pp. 62–79. https://doi.org/10.3965/j.issn.1934-6344.2010.03.062-079
14. Danish M., Naqvi M., Farooq U., Naqvi S. Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix’. Energy Procedia, 2015, vol. 75, pp. 2974–2980. https://doi.org/10.1016/j.egypro.2015.07.604
15. Demirbas A., Gullu D., Çaglar A., Akdeniz F. Estimation of calorific values of fuels from lignocellulosics. Energy Sources, 1997, vol. 19, no. 8, pp. 765–770. https://doi.org/10.1080/00908319708908888
16. Parikh J., Channiwala S. A., Ghosal G. K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005, vol. 84, no. 5, pp. 487–494. https://doi.org/10.1016/j.fuel.2004.10.010
17. Channiwala S. A., Parikh P. P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002, vol. 81, no. 8, pp. 1051–1063. https://doi.org/10.1016/S00162361(01)00131-4
18. Ebeling J. M., Jenkins B. M. Physical and chemical properties of biomass fuels. Transaction of the American Society of Agricultural Engineers (ASAE), 1985, vol. 28, no. 3, pp. 898–902. https://doi.org/10.13031/2013.32359
19. Gaur S., Reed T. B. Thermal Data for Natural and Synthetic Fuels. New York: Marcel Dekker Inc., 1998.
20. Ioelovich M. Y. Study of thermal energy of alternative solid fuels. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology, 2018, vol. 8, no. 4, pp. 117–124. http:// doi.org/10.21285/2227-2925-2018-8-4-117-124
21. Blunk S. L., Jenkins B. M. Combustion properties of lignin residue from lignocelluloses fermentation. CA, Davis: University of California., 2000, pp. 1385–1391.
22. Trinh T. N. Jensen P. A., Dam-Johansen K., Knudsen N. O., Sørensen H. R., Hvilsted S. Comparison of lignin, macroalgae, wood, and straw fast pyrolysis. Energy and Fuels, 2013, vol. 27, no. 3, pp. 1399–1409. https://doi.org/10.1021/ef301927y
23. Ryeztsov V. F., Matvejchyk A. C., Chernyavskij N. V., Rudavina E. V. Experimental research of mineral composition of straw and husks on their thermal performance. Alternativnaya Energetika i Ekologiya = Alternative Energy and Ecology, 2012, vol. 7, pp. 94–100 (in Russian).
24. Bychkov A. L., Denkin A. I., Tikhova V. D., Lomovsky O. I. Prediction of higher heating values of plant biomass from ultimate analysis data. J. Thermal Analysis and Calorimetry, 2017, vol. 130, no. 3, pp. 1399–1405. https://doi.org/10.1007/s10973-017-6350-0
25. Bychkov A. L., Denkin A. I., Tihova V. D., Lomovsky O. I. Prediction of higher heating values of lignocellulose from elemental analysis. Khimija Rastitel'nogo Syr'ja = Chemistry of Plant Raw Material, 2014, no. 3, pp. 99–104 (in Russian). https://doi.org/10.14258/jcprm.1403099
26. Phayom W., Umezaki C., Tanaka M. Relationships between major constituents, storage conditions, and higher heating values of rice straw. Engineering in Agriculture, Environment and Food, 2012, vol. 5, no. 2, pp. 76–82. https://doi.org/10.1016/S1881-8366(12)80018-8
27. Chaloupková V., Ivanova T., Hutla P., Špunarová M. Ash melting behavior of rice straw and calcium additives. Agriculture, 2021, vol. 11, no. 12, p. 1282. https://doi.org/10.3390/agriculture11121282
28. Tortosa Masiá A. A., Buhre B. J. P., Gupta R. P., Wall T. F. Characterising ash of biomass and waste. Fuel Processing Technology, 2007, vol. 88, no. 11–12, pp. 1071–1081. https://doi.org/10.1016/j.fuproc.2007.06.011
29. Bradna J., Malaťák J., Velebil J. Impact of differences in combustion conditions of rape straw on the amount of flue gases and fly ash properties. Agronomy Research, 2017, vol. 15, no. 3, pp. 649– 657.
30. Górnicki K., Kaleta A., Winiczenko R. Prediction of higher heating value of oat grain and straw biomass. ICoRES 2019 in E3S Web of Conferences, 2020, vol. 154, no. 01003, p. 1–7. https://doi.org/10.1051/e3sconf/202015401003
31. Virmond E., De Sena R. F., Albrecht W., Althoff C. A., Moreira R. F. P. M., José H. J. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes. Waste Management, 2012, vol. 32, no. 10, pp. 1952–1961. https://doi.org/10.1016/j.wasman.2012.05.014
32. Mata-Sánchez J., Pérez-Jiménez J. A., Díaz-Villanueva M. J., Serrano A., Núñez-Sánchez N., López-Giménez F. J. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel, 2013, vol. 113, pp. 750–756. https://doi.org/10.1016/j.fuel.2013.06.019
33. Maksimuk Yu., Ponomarev D., Sushkova A., Krouk V., Vasarenko I., Antonava Z. Standard molar enthalpy of formation of vanillin. Journal of the Thermal Analysis and Calorimetry, 2018, vol. 131, no. 2, pp. 1721–1733. https://doi.org/10.1007/s10973-017-6651-3
34. Korchagina E. N. Metrological characteristics of K-1 and K-3 reference benzoic acids. Measerement Techniques, 2001, vol. 44, no. 11, pp. 1138–1142. https://doi.org/10.1023/A:1014021519763
35. Bogolitsyn K. G., Gusakova M. A., Krasikova A. A. Molecular self-organization of wood lignin–carbohydrate matrix. Planta, 2021, vol. 254, no. 30, pp. 1–21. https://doi.org/10.1007/s00425021-03675-4
36. Maksimuk Yu. V., Ponomarev D. A., Kursevich V. N., Fes’ko V. V. Calorific value of wood fuel. Lesnoy zhurnal = Forestry journal, 2017, vol. 4, pp. 116–129 (in Russian). https://doi.org/10.17238/issn0536-1036.2017.4.116
37. Peduzzi E., Boissonnet G., Maréchal F. Biomass modelling: Estimating thermodynamic properties from the elemental composition. Fuel, 2016, vol. 181, pp. 207–217. https://doi.org/10.1016/J.FUEL.2016.04.111
38. Galhano dos Santos R., Bordado J. C., Mateus M. M. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel, 2018, vol. 221, pp. 72–77. https://doi.org/10.1016/j.fuel.2018.02.092
39. Huang C., Han L., Liu X., Yang Z. Models predicting calorific value of straw from the ash content. International Journal Green Energy, 2008, vol. 5, no. 6, pp. 533–539. https://doi.org/10.1080/15435070802498507
40. Jain A. K. Correlation models for predicting heating value through biomass characteristics. Journal of Agricultural Engineering, 1997, vol. 34, no. 3, pp. 12–25.
41. Sheng C., Azevedo J. L. T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 2005, vol. 28, no. 5, pp. 499–507. https://doi.org/10.1016/J.BIOMBIOE.2004.11.008
42. Callejón-Ferre A. J., Velázquez-Martí B., López-Martínez J. A., Manzano-Agugliaro F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and Sustainable Energy Reviews, 2011, vol. 15, no. 2, pp. 948–955. https://doi.org/10.1016/J.RSER.2010.11.012
43. Maksimuk Yu., Antonava Z., Krouk V., Korsakova A., Kursevich V. Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel, 2021, vol. 299, no. 120860, pp. 1–7. https://doi.org/10.1016/j.fuel.2021.120860
44. Vassilev S. V., Baxter D., Andersen L. K., Vassileva C. G., Morgan T. J. An overview of the organic and inorganic phase composition of biomass. Fuel, 2012, vol. 94. pp. 1–33. https://doi.org/10.1016/j.fuel.2011.09.030
45. Maksimuk Yu. V., Antonova Z. A., Fes’ko V. V., Kursevich V. N. Diesel biofuel viscosity and heat of combustion. Chemistry and Technology of Fuels and Oils, 2009, vol. 45, no. 5, pp. 343–348. https://doi.org/10.1007/s10553-009-0147-1
46. Kienzle E., Schrag I., Butterwick R., Opitz B. Calculation of gross energy in pet foods: new data on heat combustion and fibre analysis in a selection of foods for dogs and cats. Journal Animal Physiology and Animal Nutrition, 2001, vol. 85, no. 5–6, pp. 148–157. https://doi.org/10.1046/j.14390396.2001.00311.x