Mobile oxygen in layered nickelates of perovskite-type
https://doi.org/10.29235/1561-8331-2023-59-2-95-104
Abstract
The influence of the different types of oxygen on the structure and electrical conductivity of the perovskite-type nickelates were investigated. The nickelates La2NiO4+δ, La0,6Sr1,4NiO4–δ, Sr3Al0,75Ni1,25O7–δ were synthesised using the solidstate reaction route. Phase composition was determined by X-ray powder diffraction analysis. The iodometric titration technique was used to specify the oxygen content of the powders. Oxygen desorption and absorption, including oxygen index variation, were investigated by oxygen solid electrolyte coulometry (OSEC). Electroconductive properties of samples were studied by a standard DC four-point method. Utilizing OSEC technique, three mobile and one regular type of oxygen were observed in the perovskite layered nickelates with P/RS and 2P/RS structure. These four types of mobile oxygen differ in the binding energy to the crystal lattice and crystallographic positions. The desorption-sorption processes of various types of mobile oxygen have different effects on the thermal expansion of crystal lattice parameters. The regular oxygen, occupying the apex of octahedron, affects the lattice parameters most prominently. This type of oxygen changes the character of the temperature dependence of specific resistivity sufficiently. Interstitial oxygen does not yield such anomalies.
About the Authors
A. E. UsenkaBelarus
Usenka Alexandra E. – Ph. D (Chemistry), Associate
Professor
14, Leningradskaya Str., 220030, Minsk
I. M. Kharlamova
Belarus
Kharlamova Inga M. – Ph. D. student, Researcher
15, P. Brovka Str., 220072, Minsk
L. V. Makhnach
Belarus
Makhnach Leonid V. – Ph. D (Chemistry), Senior Researcher
14, Leningradskaya Str., 220030, Minsk
V. V. Pankov
Belarus
Pankov Vladimir V. – D. Sc. (Chemistry), Professor
14, Leningradskaya Str., 220030, Minsk
E. V. Korobko
Belarus
Korobko Evguenia V. – D. Sc. (Engineering), Professor,
Head of the Laboratory
15, P. Brovka Str., 220072, Minsk
References
1. Vashook V. V., Tolochko S. P., Yushkevich I. I., Makhnach L. V., Kononyuk I. F., Altenburg H., Hauck J, Ullmann H. Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0≤ x≤ 0.5). Solid State Ionics, 1998, vol. 110, iss. 3-4, pp. 245–253. https://doi.org/10.1016/S0167-2738(98)00134-9
2. Vashook V. V., Yushkevich I. I., Kokhanovsky L. V., Makhnach L. V., Tolochko S. P., Kononyuk I. F., Ullmann, H., Altenburg, H. Composition and conductivity of some nickelates. Solid State Ionics, 1999, vol. 119, iss. 1-4, pp. 23–30. https://doi.org/10.1016/S0167-2738(98)00478-0
3. Kharlamov I. M., Makhnach L. V., Usenka A. E., Lyakhov A. S., Ivashkevich L. S., Pankov V. V. Ruddlesden-Popper phases Sr3Ni2–xAlxO7–δ and some doped derivatives: Synthesis, oxygen nonstoichiometry and electrical properties. Solid State Ionics, 2018, vol. 324, pp. 241–246. https://doi.org/10.1016/j.ssi.2018.07.016
4. Usenka A. E., Pankov V. V., Vibhu V., Flura A., Grenier J. C., Bassat J. M. Temperature programmed oxygen desorption and sorption processes on Pr2-хLaхNiO4+δ nickelates. ECS Transactions, 2019, vol. 91, no 1, pp. 1341–1353. https://doi.org/10.1149/09101.1341ecst
5. Tarutin A. P., Lyagaeva J. G., Medvedev D. A., Bi L., Yaremchenko A. A. Recent advances in layered Ln2NiO4+d nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cell. Journal of Materiais Chemistry. A, 2021, vol. 91, pp. 154–195. https://doi.org/10.1039/d0ta08132a
6. Pikalova E., Kolchugin A., Zakharchuk K., Boiba D., Tsvinkinberg V., Filonova E., Khustov A., Yaremchenko A. International Journal of Hydrogen Energy, 2021, vol. 46, iss 32, pp. 16932–16946. https://doi.org/10.1016/j.ijhydene.2021.03.007
7. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Journal Physica B: Condensed Matter, 1993, vol. 192, iss. 1-2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I
8. Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 1986. vol. 19, iss. 4, pp. 267–272. https://doi.org/10.1107/S0021889886089458
9. Tolochko S. P., Makhnach L. V., Kononyuk I. F., Vashook V. V. Oxygen nonstoichiometry and nonequivalence of [Ni–O]+ conditions in solid solution La2–xSrxNiO4 (x = 0 – 1,4). Zhurnal neorganicheskoi khimii = Russian Journal of Inorganic Chemistry, 1994, vol. 39, no. 7, pp. 1092–1095 (in Russian).
10. Vashook V. V., Zosel J, Guth U. Oxygen solid electrolyte coulometry (OSEC). Journal Solid State Electrochemistry, 2012, vol. 16, iss. 11, pp. 3401–3421. https://doi.org/10.1007/s10008-012-1876-3
11. Makhnach L. V., Pankov V. V., Strobel P. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates La2−xSrxNiO4−δ (x = 1 and 1.4) Materials Chemistry and Physics, 2008, vol. 111, iss. 1, pp. 125–130. https://doi.org/10.1016/j.matchemphys.2008.03.022
12. Alonso J. A., Martínez-Lope M. J., García-Muñoz J. L., Fernández-Díaz M. T. A structural and magnetic study of the defect perovskite from high-resolution neutron diffraction data. Journal of Physics: Condensed Matter, 1997, vol. 9, no 30, pp. 6417–6426. https://doi.org/10.1088/0953-8984/9/30/010
13. Vidyasagar K., Reller A., Gopalakrishnan J., Rao C. R. Oxygen vacancy ordering in superlatives of the two novel oxides, La2Ni2O5 and La2Co2O5, prepared by low temperature reduction of the parent perovskites. Journal of the Chemical Society, Chemical Communications, 1985, iss. 1, pp. 7–8. https://doi.org/10.1039/c39850000007
14. Aspera S. M., Sakaue M., Wungu T. D. K., Alaydrus M., Linh T. P. T., Kasai H., Nakanishi M., Ishihara T. Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations. Journal of Physics: Condensed Matter, 2012, vol. 24, no. 40, pp. 405504. https://doi.org/10.1088/0953-8984/24/40/405504
15. Dann S. E., Weller M. T. Structure and oxygen stoichiometry in Sr3Co2O7–y (0.94 ≤ y ≤ 1.22). Journal of Solid State Chemistry, 1995, vol. 115, iss. 2, pp. 499–507. https://doi.org/10.1006/jssc.1995.1165
16. Samain L., Amshoff P., Biendicho J. J., Tietz F., Mahmoud A., Hermann R. P., Istomin, S. Ya., Grins, J., Svensson, G. Crystal structure and high-temperature properties of the Ruddlesden–Popper phases Sr3−xYx (Fe1,25Ni0,75)O7−δ (0≤ x ≤ 0,75). Journal of Solid State Chemistry, 2015, vol. 227, pp. 45–54. https://doi.org/10.1016/j.jssc.2015.03.018