Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Mobile oxygen in layered nickelates of perovskite-type

https://doi.org/10.29235/1561-8331-2023-59-2-95-104

Abstract

The influence of the different types of oxygen on the structure and electrical conductivity of the perovskite-type nickelates were investigated. The nickelates La2NiO4+δ, La0,6Sr1,4NiO4–δ, Sr3Al0,75Ni1,25O7–δ were synthesised using the solidstate reaction route. Phase composition was determined by X-ray powder diffraction analysis. The iodometric titration technique was used to specify the oxygen content of the powders. Oxygen desorption and absorption, including oxygen index variation, were investigated by oxygen solid electrolyte coulometry (OSEC). Electroconductive properties of samples were studied by a standard DC four-point method. Utilizing OSEC technique, three mobile and one regular type of oxygen were observed in the perovskite layered nickelates with P/RS and 2P/RS structure. These four types of mobile oxygen differ in the binding energy to the crystal lattice and crystallographic positions. The desorption-sorption processes of various types of mobile oxygen have different effects on the thermal expansion of crystal lattice parameters. The regular oxygen, occupying the apex of octahedron, affects the lattice parameters most prominently. This type of oxygen changes the character of the temperature dependence of specific resistivity sufficiently. Interstitial oxygen does not yield such anomalies. 

About the Authors

A. E. Usenka
Belarusian State University
Belarus

Usenka Alexandra E. – Ph. D (Chemistry), Associate
Professor

14, Leningradskaya Str., 220030, Minsk



I. M. Kharlamova
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Kharlamova Inga M. – Ph. D. student, Researcher

15, P. Brovka Str., 220072, Minsk



L. V. Makhnach
Belarusian State University
Belarus

Makhnach Leonid V. – Ph. D (Chemistry), Senior Researcher

14, Leningradskaya Str., 220030, Minsk



V. V. Pankov
Belarusian State University
Belarus

Pankov Vladimir V. – D. Sc. (Chemistry), Professor

14, Leningradskaya Str., 220030, Minsk



E. V. Korobko
Институт тепло- и массообмена имени А. В. Лыкова Национальной академии наук Беларуси
Belarus

Korobko Evguenia V. – D. Sc. (Engineering), Professor,
Head of the Laboratory

15, P. Brovka Str., 220072, Minsk



References

1. Vashook V. V., Tolochko S. P., Yushkevich I. I., Makhnach L. V., Kononyuk I. F., Altenburg H., Hauck J, Ullmann H. Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0≤ x≤ 0.5). Solid State Ionics, 1998, vol. 110, iss. 3-4, pp. 245–253. https://doi.org/10.1016/S0167-2738(98)00134-9

2. Vashook V. V., Yushkevich I. I., Kokhanovsky L. V., Makhnach L. V., Tolochko S. P., Kononyuk I. F., Ullmann, H., Altenburg, H. Composition and conductivity of some nickelates. Solid State Ionics, 1999, vol. 119, iss. 1-4, pp. 23–30. https://doi.org/10.1016/S0167-2738(98)00478-0

3. Kharlamov I. M., Makhnach L. V., Usenka A. E., Lyakhov A. S., Ivashkevich L. S., Pankov V. V. Ruddlesden-Popper phases Sr3Ni2–xAlxO7–δ and some doped derivatives: Synthesis, oxygen nonstoichiometry and electrical properties. Solid State Ionics, 2018, vol. 324, pp. 241–246. https://doi.org/10.1016/j.ssi.2018.07.016

4. Usenka A. E., Pankov V. V., Vibhu V., Flura A., Grenier J. C., Bassat J. M. Temperature programmed oxygen desorption and sorption processes on Pr2-хLaхNiO4+δ nickelates. ECS Transactions, 2019, vol. 91, no 1, pp. 1341–1353. https://doi.org/10.1149/09101.1341ecst

5. Tarutin A. P., Lyagaeva J. G., Medvedev D. A., Bi L., Yaremchenko A. A. Recent advances in layered Ln2NiO4+d nickelates: fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cell. Journal of Materiais Chemistry. A, 2021, vol. 91, pp. 154–195. https://doi.org/10.1039/d0ta08132a

6. Pikalova E., Kolchugin A., Zakharchuk K., Boiba D., Tsvinkinberg V., Filonova E., Khustov A., Yaremchenko A. International Journal of Hydrogen Energy, 2021, vol. 46, iss 32, pp. 16932–16946. https://doi.org/10.1016/j.ijhydene.2021.03.007

7. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Journal Physica B: Condensed Matter, 1993, vol. 192, iss. 1-2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I

8. Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 1986. vol. 19, iss. 4, pp. 267–272. https://doi.org/10.1107/S0021889886089458

9. Tolochko S. P., Makhnach L. V., Kononyuk I. F., Vashook V. V. Oxygen nonstoichiometry and nonequivalence of [Ni–O]+ conditions in solid solution La2–xSrxNiO4 (x = 0 – 1,4). Zhurnal neorganicheskoi khimii = Russian Journal of Inorganic Chemistry, 1994, vol. 39, no. 7, pp. 1092–1095 (in Russian).

10. Vashook V. V., Zosel J, Guth U. Oxygen solid electrolyte coulometry (OSEC). Journal Solid State Electrochemistry, 2012, vol. 16, iss. 11, pp. 3401–3421. https://doi.org/10.1007/s10008-012-1876-3

11. Makhnach L. V., Pankov V. V., Strobel P. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates La2−xSrxNiO4−δ (x = 1 and 1.4) Materials Chemistry and Physics, 2008, vol. 111, iss. 1, pp. 125–130. https://doi.org/10.1016/j.matchemphys.2008.03.022

12. Alonso J. A., Martínez-Lope M. J., García-Muñoz J. L., Fernández-Díaz M. T. A structural and magnetic study of the defect perovskite from high-resolution neutron diffraction data. Journal of Physics: Condensed Matter, 1997, vol. 9, no 30, pp. 6417–6426. https://doi.org/10.1088/0953-8984/9/30/010

13. Vidyasagar K., Reller A., Gopalakrishnan J., Rao C. R. Oxygen vacancy ordering in superlatives of the two novel oxides, La2Ni2O5 and La2Co2O5, prepared by low temperature reduction of the parent perovskites. Journal of the Chemical Society, Chemical Communications, 1985, iss. 1, pp. 7–8. https://doi.org/10.1039/c39850000007

14. Aspera S. M., Sakaue M., Wungu T. D. K., Alaydrus M., Linh T. P. T., Kasai H., Nakanishi M., Ishihara T. Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations. Journal of Physics: Condensed Matter, 2012, vol. 24, no. 40, pp. 405504. https://doi.org/10.1088/0953-8984/24/40/405504

15. Dann S. E., Weller M. T. Structure and oxygen stoichiometry in Sr3Co2O7–y (0.94 ≤ y ≤ 1.22). Journal of Solid State Chemistry, 1995, vol. 115, iss. 2, pp. 499–507. https://doi.org/10.1006/jssc.1995.1165

16. Samain L., Amshoff P., Biendicho J. J., Tietz F., Mahmoud A., Hermann R. P., Istomin, S. Ya., Grins, J., Svensson, G. Crystal structure and high-temperature properties of the Ruddlesden–Popper phases Sr3−xYx (Fe1,25Ni0,75)O7−δ (0≤ x ≤ 0,75). Journal of Solid State Chemistry, 2015, vol. 227, pp. 45–54. https://doi.org/10.1016/j.jssc.2015.03.018


Review

Views: 547


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)