Текстурные свойства упорядоченного нанопористого кремнезема, синтезированного на мезогенном темплате
https://doi.org/10.29235/1561-8331-2023-59-2-125-138
Анатацыя
Разработано несколько путей синтеза и исследованы корреляции между переменными процедуры синтеза и физико-химическими свойствами нанопористых кремнеземных материалов типа MCM-48, осаждаемых темплатным методом в присутствии низковалентного катиона железа(II). Изучено изменение структуры мезопористого каркаса кремнезема, его текстурных свойств и степени энергетической неоднородности поверхности в зависимости от молярного соотношения Fe :Si, значения рН (4 и 9 единиц), ступенчатого прокаливания (673 и 923 К) и экстракции цетилпиридиниевого темплата этанолом из ксерогелей.
Аб аўтарах
Т. КузнецоваБеларусь
Е. Копыш
Беларусь
Л. Кульбицкая
Беларусь
Д. Жумаева
Узбекістан
А. Иванец
Беларусь
Спіс літаратуры
1. Meynen, V. Verified syntheses of mesoporous materials / V. Meynen, P. Cool, E. F. Vansant // Microporous Mesoporous Mater. – 2009. – Vol. 125, iss. 3. – P. 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046
2. Mesoporous Silica Applications / L. F. Giraldo [et al.] // Macromol. Symp. – 2007. – Vol. 258, iss. 1. – P. 129–141. https://doi.org/10.1002/masy.200751215
3. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures / D. Zhao [et al.] // J. Am. Chem. Soc. – 1998. – Vol. 120, N 2. – P. 6024–6036. https://doi.org/10.1021/ja974025i.
4. Bagshaw, S. A. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants // S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia // Science. – 1995. – Vol. 269, N 5228. – P. 1242–1244. https://doi.org/10.1126/science.269.5228.1242
5. Sierra, L. Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant // L. Sierra, J.-L. Guth // Microporous Mesoporous Mater. – 1999. – Vol. 27, iss. 2-3. – P. 243–253. https://doi.org/10.1016/S1387-1811(98)00258-3
6. Corma, A. Synthesis of Si and Ti-Si-MCM-48 mesoporous materials with controlled pore sizes in the absence of polar organic additives and alkali metal ions / A. Corma, Q. Kan // Chem. Commun. – 1998 – N 5. – P. 579–580. https://doi.org/ 10.1039/A709093E
7. Sayari, A. Periodic Mesoporous Silica-Based Organic−Inorganic Nanocomposite Materials // A. Sayari, S. Hamoudi // Chem. Mater. – 2001. – Vol. 13, N 10. – P. 3151–3168. https://doi.org/10.1021/cm011039l
8. Nanoporous microspheres: from controllable synthesis to healthcare applications / J.-B. Fan [et al.] // J. Mater. Chem. B. – 2013. – N 17. – P. 2222–2235. https://doi.org/10.1039/C3TB00021D
9. Baeyer–Villiger oxidation of cyclic ketones using Fe containing MCM-48 cubic mesoporous materials / H. Subramanian [et al.] // J. Mol. Catal. A: Chem. – 2010. – Vol. 330, N 1–2. – P. 66–72. https://doi.org/10.1016/j.molcata.2010.07.003
10. Taguchi, A. Ordered mesoporous materials in catalysis / A. Taguchi, F. Schuth // Microporous Mesoporous Mater. – 2005. – Vol. 77, iss. 1. – P. 1–45. https://doi.org/10.1016/j.micromeso.2004.06.030
11. Davis, M. Ordered porous materials for emerging applications / M. Davis // Nature. – 2002. – Vol. 417. – P. 813 – 821. https://doi.org/10.1038/nature00785
12. Application of nanotechnologies for removing pharmaceutically active compounds in water: Development and future trends / Cai Zh. [et al.] // Environ. Sci.: Nano. – 2018. – Vol. 5, N 1. – P. 27–47. https://doi.org/10.1039/C7EN00644F
13. Wang, W.-W. Synthesis and magnetic property of silica/iron oxides nanorods / W.-W. Wang, J.-L. Yao // Mater. Lett. – 2010. – Vol. 64, N 7. – P. 840–842. https://doi.org/10.1016/j.matlet.2010.01.034
14. Kuznetsova, T. F. Synthesis and Modification of Ordered Silica Materials / T. F. Kuznetsova, Y. D. Sauka // Prot. Met. Phys. Chem. Surf. – 2022. – Vol. 58. – P. 255–261. https://doi.org/10.1134/S2070205122020113
15. Sol-Gel Synthesis, Texture and Catalytic Activity of Titania-Silica Sorbents / T. F. Kouznetsova [et al.] // SN Applied Sciences. – 2019. – Vol. 1. – P. 1734–1745. https://doi.org/10.1007/s42452-019-1781-9
16. Kouznetsova, T. Template synthesis and gas adsorption properties of ordered mesoporous aluminosilicates / T. F. Kuznetsova, Y. D. Sauka, A. I. Ivanets // Appl. Nanoscience. – 2021. – Vol. 11, N 6. – P. 1903–1915. https://doi.org/10.1007/s13204-021-01871-y
17. Kuznetsova, T. F. Effect of a template in the synthesis of multi-dimensional nanoporous aluminosilicate with the composition of 25% Al2O3-75% SiO2 / T. F. Kuznetsova, S. I. Eremenko // Russ. J. Phys. Chem. A. – 2015. – Vol. 89. – P. 1269–1274. https://doi.org/10.1134/S0036024415070201
18. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals / S. K. Jana // Microporous Mesoporous Mater. – 2004. – Vol. 68, iss. 1-3. – P. 133–142. https://doi.org/10.1016/j.micromeso.2003.12.010
19. Ulagappan, N. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica / N. Ulagappan, C. N. R. Rao // Chem. Commun. – 1996. – N 24. – P. 2759–2760. https://doi.org/10.1039/CC9960002759
20. Theoretical and Experimental Studies of Capillary Hysteresis in MCM-41. Proceedings of the Fifth International Conference on Fundamentals of Adsorption / A. V. Neimark [et al.] // Fundamentals of Adsorption: Proceedings of the Fifth International Conference on Fundamentals of Adsorption. – Springer US, 1996. – P. 667–673. https://doi.org/10.1007/978-1-4613-1375-5_83
21. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) / M. Thommes[et al.] // Pure Appl. Chem. – 2015. – Vol. 87, N 9–10. – P. 1051–1069https://doi.org/10.1515/pac-2014-1117
22. Ramirez, A. Study of the Acidic Sites and Their Modifications in Mesoporous Silica Synthesized in Acidic Medium under Quiescent Conditions / A. Ramirez, B. L. Lopez, L. Sierra // J. Phys. Chem. B. – 2003. – Vol. 107, N 35. – P. 9275–9280. https://doi.org/10.1021/jp0351472
23. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures / A. Monnier [et al.] // Science. – 1993. – Vol. 261, N 5126. – P. 1299–1303. https://doi.org/10.1126/science.261.5126.1299
24. Olivier, J. P. The Determination of Surface Energetic Heterogeneity Using Model Isotherms Calculated by Density Functional Theory / J. P. Olivier // Fundamentals of Adsorption. Proceedings of the Fifth International Conference on Fundamentals of Adsorption. – Springer US, 1996. – P. 699–706. https://doi.org/10.1007/978-1-4613-1375-5
25. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides / R. D. Shannon // Acta Crystallogr. – 1976. – Vol. A32. – P. 751–767. http://doi.org/10.1107/S0567739476001551
26. The state of iron in natural zeolites: A Mössbauer study / R. Roque-Malherbe [et al.] // Zeolites. – 1990. – Vol. 10, iss. 7. – P. 685–689. https://doi.org/10.1016/0144-2449(90)90080-B
27. Ratnasamy, P. Ferrisilicate analogs of zeolites / P. Ratnasamy, R. Kumar // Catal. Today. – 1991. – Vol. 9, N 4. – P. 329–416. https://doi.org/10.1016/0920-5861(91)80001-P
28. Decottignies, M. Synthesis of glasses by hot-pressing of gels / M. Decottignies, J. Phalippou, J. Zarzycki // J. Mater. Sci. – 1978. – Vol. 13. – P. 2605–2618. https://doi.org/10.1007/BF02402747
29. Spectroscopic Characterization of Silicalite and Titanium-Silicalite / M. R. Boccuti [et al.] // Stud. Surf. Sci. Catal. – 1989. – Vol. 48. – P. 133–144. https://doi.org/10.1016/S0167-2991(08)60677-1
30. Synthesis of Hydrothermally Stable and Long-Range Ordered Ce-MCM-48 and Fe-MCM-48 Materials / Y. Shao [et al.] // J. Phys. Chem. B. – 2005. – Vol. 109, N 44. – P. 20835–20841. https://doi.org/10.1021/jp054024+