Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Textural properties of ordered nanoporous silica synthesized on mesogenic template

https://doi.org/10.29235/1561-8331-2023-59-2-125-138

Abstract

Several synthesis routes have been developed and correlations between the variables of the synthesis procedure and the physicochemical properties of nanoporous silica materials of the MCM-48 type deposited by the template method in the presence of a low-valent iron (II) cation have been investigated. Changes in the structure of silica mesoporous framework, its textural properties and the degree of energy inhomogeneity of the surface were studied depending on the Fe/Si molar ratio, pH values (4 and 9 units), stepwise calcination (673 and 923 K) and extraction of cetylpyridinium template with ethanol from xerogels. 

About the Authors

T. F. Kouznetsova
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kouznetsova Tatyana F. – Ph. D. (Chemistry), Associate
Professor, Head of the Laboratory

9/1, Surganova Str., 220072, Minsk



E. A. Kopysh
Институт общей и неорганической химии Национальной академии наук Беларуси
Belarus

Kopysh Elizaveta A. – Junior Researcher, Master’s Student



L. V. Kulbitskaya
Институт общей и неорганической химии Национальной академии наук Беларуси
Belarus

Kulbitskaya Lyudmila V. – Researcher



D. J. Jumaeva
Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
Uzbekistan

Jumaeva Dilnoza J. – D. Sc. (Engineering)

77-A, Mirzo Ulugbek Str., 100170, Tashkent



A. I. Ivanets
Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Belarus


References

1. Meynen V., Cool P., Vansant E. F. Verified syntheses of mesoporous materials. Microporous Mesoporous Materials, 2009, vol. 125, iss. 3, pp. 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

2. Giraldo L. F., Lopez B. L., Perez L., Urrego S., Sierra L., Mesa M. Mesoporous Silica Applications. Macromolecular Symposium, 2007, vol. 258, iss. 1, pp. 129–141. https://doi.org/10.1002/masy.200751215

3. Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, vol. 120, no. 24, pp. 6024–6036. https://doi.org/10.1021/ja974025i

4. Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995, vol. 269, no. 5228, pp. 1242–1244. https://doi.org/ 10.1126/science.269.5228.1242

5. Sierra L., Guth J.-L. Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant. Microporous Mesoporous Materials, 1999, vol. 27, iss. 2-3, pp. 243–253. https://doi.org/10.1016/S1387-1811(98)00258-3

6. Corma A., Kan Q. Synthesis of Si and Ti-Si-MCM-48 mesoporous materials with controlled pore sizes in the absence of polar organic additives and alkali metal ions. Chemical Communications, 1998, no. 5, pp. 579–580. https://doi.org/ 10.1039/A709093E

7. Sayari A., Hamoudi S. Periodic Mesoporous Silica-Based Organic−Inorganic Nanocomposite Materials. Chemistry Materials, 2001, vol.13, no.10, pp. 3151–3168. https://doi.org/10.1021/cm011039l

8. Fan J.-B., Huang C., Jiang L., Wang S. Nanoporous microspheres: from controllable synthesis to healthcare applications. Journal Materials Chemistry B, 2013, no. 17, pp. 2222–2235. https://doi.org/10.1039/C3TB00021D

9. Subramanian H., Nettleton E. G., Budhi S., Koodali R. T. Baeyer–Villiger oxidation of cyclic ketones using Fe containing MCM-48 cubic mesoporous materials. Journal of Molecular Catalysis A: Chemical, 2010, vol. 330, no. 1–2, pp. 66–72. https://doi.org/10.1016/j.molcata.2010.07.003

10. Taguchi A., Schuth F. Ordered mesoporous materials in catalysis. Microporous Mesoporous Materials, 2005, vol. 77, iss. 1, pp. 1–45. https://doi.org/10.1016/j.micromeso.2004.06.030

11. Davis M. Ordered porous materials for emerging applications. Nature, 2002, vol. 417, pp. 813–821. https://doi.org/10.1038/nature00785

12. Cai Zh., Dwivedi A. D., Lee W.-N., Zhao X. et al. Application of nanotechnologies for removing pharmaceutically active compounds in water: Development and future trends. Environmental Science: Nano, 2018, vol. 5, no. 1, pp. 27–47. https://doi.org/10.1039/C7EN00644F

13. Wang W.-W., Yao J.-L. Synthesis and magnetic property of silica/iron oxides nanorods. Materials Letters, 2010, vol. 64, no. 7, pp. 840 – 842. https://doi.org/10.1016/j.matlet.2010.01.034

14. Kuznetsova T. F., Sauka Y. D. Synthesis and Modification of Ordered Silica Materials. Protection of Metals and Physical Chemistry of Surfaces, 2022, vol. 58, pp. 255–261. https://doi.org/10.1134/S2070205122020113

15. Kouznetsova T. F., Sidorenko A. Yu., Ivanets A. I. et al. Sol-Gel Synthesis, Texture and Catalytic Activity of Titania-Silica Sorbents. SN Applied Sciences, 2019, vol. 1, pp. 1734–1745. https://doi.org/10.1007/s42452-019-1781-9

16. Kouznetsova T., Sauka J., Ivanets A. Template synthesis and gas adsorption properties of ordered mesoporous aluminosilicates. Applied Nanoscience, 2021, vol. 11, no. 6, pp. 1903–1915. https://doi.org/10.1007/s13204-021-01871-y

17. Kuznetsova T. F., Eremenko S. I. Effect of a template in the synthesis of multi-dimensional nanoporous aluminosilicate with the composition of 25% Al2O3-75% SiO2. Russian Journal of Physic and Chemistry A, 2015, vol. 89, pp.1269–1274. https://doi.org/10.1134/S0036024415070201

18. Jana S. K., Nishida R., Shindo K., Kugita T., Namba S. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Materials, 2004, vol. 68, iss. 1-3, pp. 133–142. https://doi.org/10.1016/j.micromeso.2003.12.010

19. Ulagappan N., Rao C. N. R. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. Chemical Communications, 1996, no. 24, pp. 2759–2760. https://doi.org/10.1039/CC9960002759

20. Neimark A. V., Ravikovitch P. I., Domhnaill S. C. O, Schuth F., Unger K. K. Theoretical and Experimental Studies of Capillary Hysteresis in MCM-41. Fundamentals of Adsorption: Proceedings of the Fifth International Conference on Fundamentals of Adsorption. Springer US, 1996, pp. 667–673. https://doi.org/10.1007/978-1-4613-1375-5_83

21. Thommes M., Kaneko K., Neimark A. V., Olivie J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. vol. 87, no. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

22. Ramirez A., Lopez B. L., Sierra L. Study of the Acidic Sites and Their Modifications in Mesoporous Silica Synthesized in Acidic Medium under Quiescent Conditions. Russian Journal of Physic and Chemistry B, 2003, vol. 107, no. 35, pp. 9275–9280. https://doi.org/10.1021/jp0351472

23. Monnier A., Schuth F., Huo Q., Kumar D., Margolese D., Maxwell R. S., Stucky G. D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B. F. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science, 1993, vol. 261, no. 5126, pp. 1299–1303. https://doi.org/10.1126/science.261.5126.1299

24. Olivier J. P. The Determination of Surface Energetic Heterogeneity Using Model Isotherms Calculated by Density Functional Theory. Fundamentals of Adsorption. Proceedings of the Fifth International Conference on Fundamentals of Adsorption. Springer US, 1996, pp. 699–706. https://doi.org/10.1007/978-1-4613-1375-5

25. Shannon R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chalcogenides. Acta Crystallographica, 1976, vol. A32, pp. 751–767. http://doi.org/10.1107/S0567739476001551

26. Roque-Malherbe R., Diaz-Aguila C., Reguera-Ruiz E., Fundora-Lliteras J., Lopez-Colado L., Hernandez-Velez M. The state of iron in natural zeolites: A Mössbauer study. Zeolites, 1990, vol. 10, iss. 7, pp. 685–689. https://doi.org/10.1016/0144-2449(90)90080-B

27. Ratnasamy P., Kumar R. Ferrisilicate analogs of zeolites. Catalysis Today, 1991, vol. 9, no. 4, pp. 329–416. https://doi.org/10.1016/0920-5861(91)80001-P

28. Decottignies M., Phalippou J., Zarzycki J. Synthesis of glasses by hot-pressing of gels. Journal of Materials Science, 1978, vol. 13, pp. 2605–2618. https://doi.org/10.1007/BF02402747

29. Boccuti M. R., Rao K. M., Zecchina A., Leofanti G., Petrini G. Spectroscopic Characterization of Silicalite and Titanium-Silicalite. Studes in Surface Science and Catalysis, 1989, vol. 48, pp.133–144. https://doi.org/10.1016/S0167-2991(08)60677-1

30. Shao Y., Wang L., Zhang J., Anpo M. Synthesis of Hydrothermally Stable and Long-Range Ordered Ce-MCM-48 and Fe-MCM-48 Materials. Journal of Physical Chemistry B, 2005, vol. 109, no. 44, pp. 20835–20841. https://doi.org/10.1021/jp054024+


Review

Views: 369


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)