Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Lipophilicity of BODIPY fluorophores and their distribution in 1-octanol–water system

https://doi.org/10.29235/1561-8331-2023-59-2-150-161

Abstract

The work covers synthesis and lipophilicity estimation of several BODIPY dyes. For these compounds, the distribution between 1-octanol and water layers is experimentally described and the corresponding partition coefficients LogP are calculated. The experimental LogP values are compared with popular fragment-based methods XLopP3, ALogPS, WLogP, SILICOS-IT and MLogP. Additionally, the hydrophobic and polar surface areas are found with quantum-mechanical calculations. That allowed to find a correlation between the LogP coefficient and the molecular surface topology, as well as to determine the corresponding incremental values of the methyl, acetyl, and phenyl substituents. 

About the Authors

M. S. Horetski
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Horetski Matvey S. – Junior Researcher

14, Leningradskaya Str., 220006, Minsk



N. S. Frolova
Research Institute for Physical Chemical Problems of the Belarusian State University
Russian Federation

Frolova Nina S. – Researcher

14, Leningradskaya Str., 220006, Minsk



V. M. Shkumatov
Research Institute for Physical Chemical Problems of the Belarusian State University
Russian Federation

Shkumatov Vladimir M. – Corresponding Member of the
National Academy of Sciences of Belarus, D. Sc. (Biology), Professor, Head of the Laboratory

14, Leningradskaya Str., 220006, Minsk



References

1. Spracklin D. K., Chen D., Bergman A. J., Callegari E., Obach R. S. Mini-Review: Comprehensive Drug Disposition Knowledge Generated in the Modern Human Radiolabeled ADME Study. CPT: Pharmacometrics & Systems Pharmacology, 2020, vol. 9, no 8, pp. 428–434. https://doi.org/10.1002/psp4.12540

2. Kassel D. B. Applications of high-throughput ADME in drug discovery. Current Opinion in Chemical Biology, 2004, vol. 8, no 3, pp. 339–345. https://doi.org/10.1016/j.cbpa.2004.04.015

3. Abuhelwa A. Y., Williams D. B., Upton R. N., R. Foster D. J. Food, gastrointestinal pH, and models of oral drug absorption. European Journal of Pharmaceutics and Biopharmaceutics, 2017, vol. 112, pp. 234–248. https://doi.org/10.1016/j.ejpb.2016.11.034

4. Arnott J. A., Planey S. L. The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 2012, vol. 7, no 10, pp. 863–875. https://doi.org/10.1517/17460441.2012.714363

5. Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, vol. 46, iss. 1-3, pp. 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

6. Zhu M., Su H., Bao Y., Li J., Su G. Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method . Chemosphere, 2022, vol. 287, part 4, pp. 132407. https://doi.org/10.1016/j.chemosphere.2021.132407

7. Henchoz Y., Guillarme D., Rudaz S., Veuthey J.-L., Carrupt P.-A. High-Throughput log P Determination by Ultraperformance Liquid Chromatography: A Convenient Tool for Medicinal Chemists. Journal of Medicinal Chemistry, 2008, vol. 51, no 3, pp. 396–399. https://doi.org/10.1021/jm7014809

8. Cumming H., Rücker C. Octanol–Water Partition Coefficient Measurement by a Simple 1H NMR Method. ACS Omega, 2017, vol. 2, no 9, pp. 6244–6249. https://doi.org/10.1021/acsomega.7b01102

9. Fujita T., Iwasa J., Hansch C. A New Substituent Constant, π, Derived from Partition Coefficients. Journal of the American Chemical Society, 1964, vol. 86, no 23, pp. 5175–5180. https://doi.org/10.1021/ja01077a028

10. Ghose A. K., Viswanadhan V. N., Wendoloski J. J. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods:  An Analysis of ALOGP and CLOGP Methods. The Journal of Physical Chemistry A, 1998, vol. 102, no 21, pp. 3762–3772. https://doi.org/10.1021/jp980230o

11. Meylan W. M., Howard P. H. Atom/fragment contribution method for estimating octanol-water partition coefficients. Journal of Pharmaceutical Sciences, 1995, vol. 84, no 1, pp. 83–92. https://doi.org/10.1002/jps.2600840120

12. Tetko I. V., Tanchuk V. Y., Villa A. E. P. Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. Journal of Chemical Information and Computer Sciences, 2001, vol. 41, no 5, pp. 1407–1321. https://doi.org/10.1021/ci010368v

13. Kundi V., Ho J. Predicting Octanol–Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods?. The Journal of Physical Chemistry B, 2019, vol. 123, no 31, pp. 6810–6822. https://doi.org/10.1021/acs.jpcb.9b04061

14. Kiernan J. A. Dyes and other colorants in microtechnique and biomedical research. Coloration Technology, 2006, vol. 122, no 1, pp. 1–21. https://doi.org/10.1111/j.1478-4408.2006.00009.x

15. Combs C. A. Fluorescence microscopy: a concise guide to current imaging methods. Current Protocols in Neuroscience, 2010, vol. 50, no 1. https://doi.org/10.1002/0471142301.ns0201s50

16. Loudet A., Burgess K. BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 2007, vol. 107, no 11, pp. 4891–4932. https://doi.org/10.1021/cr078381n

17. Bittel A. M., Davis A. M., Wang L., Nederlof M. A., Escobedo J. O., Strongin R. M., Gibbs S. L. Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy. Scientific Reports, 2018, vol. 8, pp. 4590. https://doi.org/10.1038/s41598-018-22892-8

18. Wang J. P., Huo F., Yue Y., Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H2S since 2015. Luminescence, 2020, vol. 35, no 8, pp. 1156–1173. https://doi.org/10.1002/bio.3831

19. Minchin J. E. N., Rawls J. F. Chapter 3 - In vivo Analysis of White Adipose Tissue in Zebrafish. Methods in Cell Biology, 2011, vol. 105, pp. 63–86. https://doi.org/10.1016/B978-0-12-381320-6.00003-5

20. Nguyen K. H., Hao Y., Chen W., Zhang Y., Xu M., Yang M., Liu Y. N. Recent progress in the development of fluorescent probes for hydrazine. Luminescence, 2018, vol. 33, no 5, pp. 816 – 836. https://doi.org/10.1002/bio.3505

21. Vedamalai M., Gupta I. Design and synthesis of the BODIPY–BSA complex for biological applications. Luminescence, 2018, vol. 33, no 1, pp. 10–14. https://doi.org/10.1002/bio.3365

22. Shen B., Qian Y., Qi Z., Lu C., Cui Y. Near-Infrared Two-Photon Fluorescent Chemodosimeter Based on Rhodamine-BODIPY for Mercury Ion Fluorescence Imaging in Living Cells. ChemistrySelect, 2017, vol. 2, no 31. pp. 9970–9976. https://doi.org/10.1002/slct.201702092

23. Courrier E., Maret C., Charaoui‐Boukerzaza S., Lambert V., De Nicola A., Muzuzu W., Ulrich G., Raberin H., Flori P., Moine B., He Z., Gain P., Thuret G. Synthesis of Fluorescent BODIPY-Labeled Analogue of Miltefosine for Staining of Acanthamoeba. ChemistrySelect, 2018, vol. 3, no 27, pp. 7674–7679. https://doi.org/10.1002/slct.201801159

24. Murale D. P., Hong S. C., Haque M. M., Lee J.-S. Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking. ChemBioChem, 2018, vol. 19, no 10, pp. 1001–1005. https://doi.org/10.1002/cbic.201800059

25. Murale D. P., Haque M. M., Hong S. C., Jang S., Lee J. H., An S. J., Lee J.-S. Development of a bifunctional BODIPY probe for mitochondria imaging and in situ photo-crosslinking in live cell. Dyes and Pigments, 2021, vol. 196, pp. 109830. https://doi.org/10.1016/j.dyepig.2021.109830

26. Jurášek M., Valečka J., Novotný I., Kejík Z., Fähnrich J., Marešová A., Tauchen J., Bartůněk P., Dolenský B., Jakubek M., Drašar P. B., Králová J. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues. Bioorganic Chemistry, 2021, vol. 117, pp. 105410. https://doi.org/10.1016/j.bioorg.2021.105410

27. Palao E., Slanina T., Muchová L., Šolomek T., Vítek L., Klán P. Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules. Journal of the American Chemical Society, 2016, vol. 138, no 1, pp. 126–133. https://doi.org/10.1021/jacs.5b10800

28. Horetski M., Gorlova A., Płocińska R., Brzostek A., Faletrov Y., Dziadek J., Shkumatov V. Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3-Pyrrolyl Boron-Dipyrromethene. ChemistrySelect, 2022, vol. 7, no 22, pp. e202200506. https://doi.org/10.1002/slct.202200506

29. Romieu A., Massif C., Rihn S., Ulrich G., Ziessel R., Renard P.-Y. The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes. New Journal of Chemistry, 2013, vol. 37, pp. 1016–1027. https://doi.org/10.1039/C3NJ41093E

30. Niu G., Zhang R., Kwong J. P. C., Lam J. W. Y., Chen C., Wang J., Chen Y., Feng X., Kwok R. T. K., Sung H. H.-Y., Williams I. D., Elsegood M. R. J., Qu J., Ma C., Wong K. S., Yu X., Tang B. Z. Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AIEgens at Ultralow Concentration. Chemistry of Materials, 2018, vol. 30, no 14, pp. 4778–4787. https://doi.org/10.1021/acs.chemmater.8b01943

31. Courtis A. M., Santos S. A., Guan Y., Hendricks J. A., Ghosh B., Szantai-Kis D. M., Reis S. A., Shah J. V., Mazitschek R. Monoalkoxy BODIPYs—A Fluorophore Class for Bioimaging. Bioconjugate Chemistry, 2014, vol. 25, no 6, pp. 1043–1051. https://doi.org/10.1021/bc400575w

32. Cheng T., Zhao Y., Li X., Lin F., Xu Y., Zhang X., Li Y., Wang R., Lai L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. Journal of Chemical Information and Modeling, 2007, vol. 47, no 6, pp. 2140–2148. https://doi.org/10.1021/ci700257y

33. Wildman S. A., Crippen G. M. Prediction of Physicochemical Parameters by Atomic Contributions. Journal of Chemical Information and Modeling, 1999, vol. 39, no 5, pp. 868–873. https://doi.org/10.1021/ci700257y

34. Silicos-IT/Filter-IT. Available at: https://github.com/silicos-it/filter-it (accessed 2 February 2023).

35. Moriguchi I., Hirono S., Liu Q., Nakagome I., Matsushita Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chemical and Pharmaceutical Bulletin, 1992, vol. 40, no 1, pp. 127–130. https://doi.org/10.1248/cpb.40.127

36. XLOGP3 online. Available at: http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/xlogp3/ (accessed 3 February 2023).

37. ALogPS 2.1. Available at: http://www.vcclab.org/lab/alogps/ (accessed 3 February 2023).

38. SwissADME. Available at: http://www.swissadme.ch/index.php (accessed 3 February 2023).

39. Neese F. The ORCA program system. WIREs Comput Mol Sci, 2011, vol. 2, no 1, pp. 73–78. https://doi.org/10.1002/wcms.81

40. Neese F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science, 2018, vol. 8, no 1, pp. e1327. https://doi.org/10.1002/wcms.1327

41. Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 1999, vol. 110, no 13, pp. 6158–6170. https://doi.org/10.1063/1.478522

42. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 2005, vol. 7, pp. 3297–3305. https://doi.org/10.1039/B508541A

43. Tsuzuki S., Uchimaru T. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections. Physical Chemistry Chemical Physics, 2020, vol. 22, pp. 22508–22519. https://doi.org/10.1039/D0CP03679J

44. Marenich A. V., Cramer C. J., Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B, 2009, vol. 113, no 18, pp. 6378–6396. https://doi.org/10.1021/jp810292n

45. Armarego W. L. F, Chai C. Purification of Laboratory Chemicals. Elsevier Inc. All, 2013. 1002 p. https://doi.org/10.1016/C2009-0-64000-9

46. Palm K., Luthman K., Unge A.-L., Strandlund G., Artursson P. Correlation of drug absorption with molecular surface properties. Journal of Pharmaceutical Sciences, 1996, vol. 85, no 1, pp. 32–39. https://doi.org/10.1021/js950285r

47. Matsson P., Kihlberg J. How Big Is Too Big for Cell Permeability?. Journal of Medicinal Chemistry, 2017, vol. 60, no 5, pp. 1662–1664. https://doi.org/10.1021/acs.jmedchem.7b00237


Review

Views: 465


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)