Липофильность BODIPY флуорофоров и их распределение в системе октанол-1–вода
https://doi.org/10.29235/1561-8331-2023-59-2-150-161
Аннотация
Выполнен синтез нескольких BODIPY флуорофоров и рассмотрено их распределение в системе октанол-1–вода. Для оценки эффективности использования расчетных методов при описании липофильности BODIPY производных обсуждены такие подходы, как XLopP3, ALogPS, WLogP, SILICOS-IT и MLogP. С помощью квантово-механических расчетов найдены гидрофобная и полярная площади молекулярных поверхностей соединений. Это позволило установить корреляцию между коэффициентом LogP и топологией молекулярной поверхности, а также определить соответствующие величины инкрементов для метильного, ацетильного и фенильного заместителей.
Ключевые слова
Об авторах
М. С. ХорецкийБеларусь
Хорецкий Матвей Сергеевич – мл. науч. сотрудник
ул. Ленинградская, 14, 220006, Минск
Н. С. Фролова
Россия
Фролова Нина Степановна – науч. сотрудник
ул. Ленинградская, 14, 220006, Минск
В. М. Шкуматов
Россия
Шкуматов Владимир Макарович – член-корреспондент, д-р биол. наук, профессор, зав. лаб.
ул. Ленинградская, 14, 220006, Минск
Список литературы
1. Mini-Review: Comprehensive Drug Disposition Knowledge Generated in the Modern Human Radiolabeled ADME Study / D. K. Spracklin [et al.] // CPT Pharmacometrics Syst. Pharmacol. - 2020. - Vol. 9, N 8. - P. 428-434. https://doi.org/10.1002/psp4.12540
2. Kassel, D. B. Applications of high-throughput ADME in drug discovery / D. B. Kassel // Curr. Opin. Chem. Biol. - 2004. - Vol. 8, N 3. - P. 339-345. https://doi.org/10.1016/j.cbpa.2004.04.015
3. Food, gastrointestinal pH, and models of oral drug absorption / A. Y. Abuhelwa [et al.] // Eur. J. Pharm. Biopharm. - 2017. - Vol. 112. - P. 234-248. https://doi.org/10.1016/j.ejpb.2016.11.034
4. Arnott, J. A. The influence of lipophilicity in drug discovery and design / J. A. Arnott, S. L. Planey // Expert. Opin. Drug Discov. - 2012. - Vol. 7, N 10. - P. 863-875. https://doi.org/10.1517/17460441.2012.714363
5. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. - 2001. - Vol. 46, iss. 1-3. - P. 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
6. Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method / M. Zhu [et al.] // Chemosphere. - 2022. - Vol. 287, Part 4. - P. 132407. https://doi.org/10.1016/j.chemosphere.2021.132407
7. High-Throughput log P Determination by Ultraperformance Liquid Chromatography: A Convenient Tool for Medicinal Chemists / Y. Henchoz [et al.] // J. Med. Chem. - 2008. - Vol. 51, N 3. - P. 396-399. https://doi.org/10.1021/jm7014809
8. Cumming, H. Octanol-Water Partition Coefficient Measurement by a Simple 1H NMR Method / H. Cumming, C. Rücker // ACS Omega. - 2017. - Vol. 2, N 9. - P. 6244-6249. https://doi.org/10.1021/acsomega.7b01102
9. Fujita, T. A. New Substituent Constant, π, Derived from Partition Coefficients / T. Fujita, J. Iwasa, C. Hansch // J. Am. Chem. Soc. - 1964. - Vol. 86, N 23. - P. 5175-5180. https://doi.org/10.1021/ja01077a028
10. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods / A. K. Ghose [et al.] // J. Phys. Chem. A. - 1998. - Vol. 102, N 21. - P. 3762-3772. https://doi.org/10.1021/jp980230o
11. Meylan, W. M. Atom/fragment contribution method for estimating octanol-water partition coefficients / W. M. Meylan, P. H. Howard // J. Pharm. Sci. - 1995. - Vol. 84, N 1. - P. 83-92. https://doi.org/ 10.1002/jps.2600840120.
12. Tetko, I. V. Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices / I. V. Tetko, V. Y. Tanchuk, A. E. P. Villa // J. Chem. Inf. Comput. Sci. - 2001. - Vol. 41, N 5. - P. 1407-1321. https://doi.org/ 10.1021/ci010368v.
13. Kundi, V. Predicting Octanol-Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods? /V. Hundi, J. Ho // J. Phys. Chem. B. - 2019. - Vol. 123, N 31. - P. 6810-6822. https://doi.org/10.1021/acs.jpcb.9b04061
14. Kiernan, J. A. Dyes and other colorants in microtechnique and biomedical research / J. A. Kiernan // Color. Technol. - 2006. - Vol. 122, N 1. - P. 1-21. https://doi.org/10.1111/j.1478-4408.2006.00009.x
15. Combs, C. A. Fluorescence microscopy: a concise guide to current imaging methods / C. A. Combs // Curr. Protoc. Neurosci. - 2010. - Vol. 50, N 1. https://doi.org/10.1002/0471142301.ns0201s50
16. Loudet, A. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties / A. Loudet, K. Burgess // Chem. Rev. - 2007. - Vol. 107, N 11. - P. 4891-4932. https://doi.org/10.1021/cr078381n
17. Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy / A. M. Bittel [et al.] // Scientific Reports. - 2018. - Vol. 8. - P. 4590. https://doi.org/10.1038/s41598-018-22892-8
18. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H2S since 2015 / J. P. Wang [et al.] // Luminescence. - 2020. - Vol. 35, N 8. - P. 1156-1173. https://doi.org/10.1002/bio.3831
19. Minchin, J. E. N. Chapter 3 - In vivo Analysis of White Adipose Tissue in Zebrafish / J. E. N. Minchin, J. F. Rawls //Methods Cell Biol. - 2011. - Vol. 105. - P. 63-86. https://doi.org/10.1016/B978-0-12-381320-6.00003-5
20. Recent progress in the development of fluorescent probes for hydrazine / K. H. Nguen [et al.] // Luminescence. - 2018. - Vol. 33, N 5. - P. 816-836. https://doi.org/10.1002/bio.3505
21. Vedamalai, M. Design and synthesis of the BODIPY-BSA complex for biological applications / M. Vedamalai, I. Gupta // Luminescence. - 2018. - Vol. 33, N 1. - P. 10-14. https://doi.org/10.1002/bio.3365
22. Near-Infrared Two-Photon Fluorescent Chemodosimeter Based on Rhodamine-BODIPY for Mercury Ion Fluorescence Imaging in Living Cells / B. Chen [et al.] // ChemistrySelect. - 2017. - Vol. 2, N 31. - P. 9970-9976. https://doi.org/10.1002/slct.201702092
23. Synthesis of Fluorescent BODIPY-Labeled Analogue of Miltefosine for Staining of Acanthamoeba / E. Courrier [et al.] // ChemistrySelect. - 2018. - Vol. 3, N 27. - P. 7674-7679. https://doi.org/10.1002/slct.201801159
24. Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking / D. P. Murale [et al.] // ChemBioChem. - 2018. - Vol. 19, N 10. - P. 1001-1005. https://doi.org/10.1002/cbic.201800059
25. Development of a bifunctional BODIPY probe for mitochondria imaging and in situ photo-crosslinking in live cell / D. P. Murale [et al.] // Dye. Pigment. - 2021. - Vol. 196. - P. 109830. https://doi.org/10.1016/j.dyepig.2021.109830
26. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues / M. Jurášek [et al.] // Bioorg. Chem. - 2021. - Vol. 117. - P. 105410. https://doi.org/10.1016/j.bioorg.2021.105410
27. Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules / E. Palao [et al.] // J. Am. Chem. Soc. - 2016. - Vol. 138, N 1. - P. 126-133. https://doi.org/10.1021/jacs.5b10800
28. Synthesis, Optical Properties, Preliminary Antimycobacterial Evaluation and Docking Studies of Trifluoroacetylated 3-Pyrrolyl Boron-Dipyrromethene / M. Horetski [et al.] // ChemistrySelect. - 2022. - Vol. 7, N 22. - P. e202200506. https://doi.org/10.1002/slct.202200506
29. The first comparative study of the ability of different hydrophilic groups to water-solubilise fluorescent BODIPY dyes / A. Romieu [et al.] // New J. Chem. - 2013. - Vol. 37. - P. 1016-1027. https://doi.org/10.1039/C3NJ41093E
30. Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AIEgens at Ultralow Concentration / G. Niu [et al.] // Chem. Mater. - 2018. - Vol. 30, N 14. - P. 4778-4787. https://doi.org/10.1021/acs.chemmater.8b01943
31. Monoalkoxy BODIPYs-A Fluorophore Class for Bioimaging / A. M. Courtis [et al.] // Bioconjugate Chem. - 2014. - Vol. 25, N 6. - P. 1043-1051. https://doi.org/10.1021/bc400575w
32. Computation of octanol-water partition coefficients by guiding an additive model with knowledge / T. Cheng [et al.] // J Chem Inf Model. - 2007. - Vol. 47, N 6. - P. 2140-2148. https://doi.org/10.1021/ci700257y
33. Wildman, S. A. Prediction of Physicochemical Parameters by Atomic Contributions / S. A. Wildman, G. M. Crippen // J. Chem. Inf. Comput. Sci. - 1999. - Vol. 39, N 5. - P. 868-873. https://doi.org/10.1021/ci700257y
34. Silicos-IT/Filter-IT [Electronic Resource]. - Mode of access: https://github.com/silicos-it/filter-it. - Date of access: 2 February 2023.
35. Simple Method of Calculating Octanol/Water Partition Coefficient / I. Moriguchi [et al.] // Chem. Pharm. Bull. - 1992. - Vol. 40, N 1. - P. 127-130. https://doi.org/10.1248/cpb.40.127
36. XLOGP3 online [Electronic Resource]. - Mode of access: http://www.sioc-ccbg.ac.cn/skins/ccbgwebsite/software/x. - Date of access: 2 February 2023.
37. ALogPS 2.1 [Electronic Resource]. - Mode of access:http://www.vcclab.org/lab/alogps. - Date of access 3 February 2023.
38. SwissADME. [Electronic Resource]. - Mode of access: http://www.swissadme.ch/index.php. - Date of access: 3 February 2023.
39. Neese, F. The ORCA program system / F. Nesse // WIREs Comput. Mol. Sci. - 2011. - Vol. 2, N 1. - P. 73-78. https://doi.org/10.1002/wcms.81
40. Neese, F. Software update: the ORCA program system, version 4.0 / F. Nesse // WIREs Comput. Mol. Sci. - 2018. - Vol. 8, N 1. - P. e1327. https://doi.org/10.1002/wcms.1327
41. Adamo, C. Toward reliable density functional methods without adjustable parameters: The PBE0 model / C. Adamo, V. Barone // J. Chem. Phys. - 1999. - Vol. 110, N 13. - P. 6158-6170. https://doi.org/10.1063/1.478522
42. Weigend, F. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy / F. Weigend, R. Ahlrichs // Phys. Chem. Chem. Phys. - 2005. - Vol. 7. - P. 3297-3305. https://doi.org/10.1039/B508541A
43. Tsuzuki, S. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections // S. Tsuzuki, T. Uchimaru // Phys. Chem. Chem. Phys. - 2020. - Vol. 22. - P. 22508-22519. https://doi.org/10.1039/D0CP03679J
44. Marenich, A. V. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions / A. V. Marenich, C. J. Cramer, D. G. Truhlar // J. Phys. Chem. B - 2009. - Vol. 113, N 18. - P. 6378-6396. https://doi.org/10.1021/jp810292n
45. Armarego W. L. F, Purification of Laboratory Chemicals / W. L. F Armarego, C. Chai. - Elsevier Inc. All, 2013. - 1002 p. https://doi.org/10.1016/C2009-0-64000-9
46. Correlation of drug absorption with molecular surface properties / K. Palm [et al.] // J. Pharm. Sci. - 1996. - Vol. 85, N 1. - P. 32-39. https://doi.org/10.1021/js950285r
47. Matsson, P. How Big Is Too Big for Cell Permeability? / P. Matsson, J. Kihlberg // J. Med. Chem. - 2017. - Vol. 60, N 5. - P. 1662-1664. https://doi.org/10.1021/acs.jmedchem.7b00237
Рецензия
ISSN 2524-2342 (Online)