Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Obtaining hybrid absorbents by grafting acrylamide onto chitosan chains under gamma irradiation

https://doi.org/10.29235/1561-8331-2023-59-3-242-256

Abstract

Hybrid hydrogels have been synthesized by radiation grafting of acrylamide to chitosan chains. The structure of the acrylamide-grafted chitosan was examined using FTIR spectroscopy, X-ray diffraction and simultaneous thermal analysis. It has been determined that both hydroxyl and amino groups of the polysaccharide are the grafting centers of growing polyacrylamide chains on the chitosan macromolecules. The effect of the reagents ratio on the sorption and rheological properties of the obtained hydrogels has been studied. Hydrogels based on acrylamide-grafted chitosan were modified chemically by alkaline hydrolysis, and the effect of hydrolysis on the sorption capacity of hydrogels with respect to water and Cu(II) ions was examined.

About the Authors

E. K. Fomina
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Fomina Elena K. – Ph. D. (Chemistry), Leading Researcher

14, Leningradskaya Str., 220006, Minsk



E. V. Grinyuk
Research Institute for Physical Chemical Problems of the Belarusian State University; Belarusian State University
Belarus

Grinyuk Evgeni V. – Ph. D. (Chemistry), Associate Professor, Director

14, Leningradskaya Str., 220006, Minsk



I. A. Klimovtsova
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Klimovtsova Iraida A. – Senior Researcher

14, Leningradskaya Str., 220006, Minsk



D. L. Kudryavsky
Research Institute for Physical Chemical Problems of the Belarusian State University; Belarusian State University
Belarus

Kudryavsky Dmitry L. – Postgraduate Student, Junior Researcher

14, Leningradskaya Str., 220006, Minsk



A. A. Fedorenko
Research Institute for Physical Chemical Problems of the Belarusian State University; Belarusian State University
Belarus

Fedorenko Alexandra A. – Graduate Student, Junior Researcher

14, Leningradskaya Str., 220006, Minsk



Y. D. Ivanchikov
Limited Liability Company «Adukar»
Belarus

Ivanchikov Yan D. – Chemist

13, Moskovskaya Str., 220007, Minsk



D. I. Shiman
Research Institute for Physical Chemical Problems of the Belarusian State University; Belarusian State University
Belarus

Shiman Dmitri I. – Ph. D. (Chemistry), Аssociate Professor, Leading Researcher

14, Leningradskaya Str., 220006, Minsk



I. A. Salnikova
The Joint Institute for Power and Nuclear Research – Sosny of the National Academy of Sciences of Belarus
Belarus

Salnikova Irina A. – Head of the Research Section

220109, lockbox 119, Minsk



O. V. Yakimenko
Belarusian State University
Belarus

Yakimenko Oleg V. – Senior Lecturer, Chemistry Department

14, Leningradskaya Str., 220006, Minsk



References

1. Ahmed E. M. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015, vol. 6, no. 2, pp. 105–121. https://doi.org/10.1016/j.jare.2013.07.006

2. Zohuriaan-Mehr M. J., Kabiri K. Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 2008, vol. 17, no. 6, pp. 451–477.

3. Sikder A., Pearce A. K., Parkinson S. J., Napier R., O’Reilly R. K. Recent Trends in Advanced Polymer Materials in Agriculture Related Applications (Review). ACS Applied Polymer Materials, 2021, vol. 3, no. 3, pp. 1203–1217. https://doi.org/10.1021/acsapm.0c00982

4. Elshafie H. S., Camele I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield (Review). Sustainability, 2021, vol. 13, no. 6, 3253. https://doi.org/10.3390/su13063253

5. Qureshi M. A., Nishat N., Jadoun S., Ansari M. Z. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. Carbohydrate Polymer Technologies and Applications, 2020. vol. 1, pp. 100014. https://doi.org/10.3390/su13063253

6. Raju M. P., Raju K. M. Design and synthesis of superabsorbent polymers. Journal of Applied Polymer Science, 2001, vol. 80, no. 14, pp. 2635–2639. https://doi.org/10.1002/app.1376

7. Cheng B., Pei B., Wang Z., Hu Q. Advances in chitosan-based superabsorbent hydrogels. RSC Advances, 2017, vol. 7, no. 67, pp. 42036‒42046. https://doi.org/10.1039/c7ra07104c

8. Khairkar S. R., Raut A. R. Adsorption Studies for the Removal Heavy Metal by Chitosan-G-Poly (Acrylicacid-Co-Acrylamide) Composite. Science Journal of Analytical Chemistry, 2014, vol. 2, no. 6, pp. 67‒70. https://doi.org/10.11648/j.sjac.20140206.12

9. Kuchina Y. A., Dolgopyatova N. V., Novikov V. Y., Sagaidachny V. A., Morozov N. N. Instrumental methods for the degree of deacetylation of chitin. Vestnik МGТU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta = Vestnik of MSTU, 2012, vol. 15, no. 1, pp. 107–113 (in Russian).

10. Siyam T. Development of acrylamide polymers for the treatment of waste water. Designed Monomers and Polymers, 2001, vol. 4, no. 2, pp. 107‒168. http://dx.doi.org/10.1163/156855500300203377

11. Murugan R., Mohan S., Bigotto A. FTIR and polarized raman spectra of acrylamide and polyacrylamide. Journal of the Korean Physical Society, 1998, vol. 32, no. 4, pp. 505–512.

12. Magalhães A. S. G., Neto M. P. A., Bezerra M. N., Ricardo N. M. P. S., Feitosa J. P. A. Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim. Nova, 2012, vol. 35, no. 7, pp. 1464–1467. https://doi.org/10.1590/S0100-40422012000700030

13. Krul’ L. P., Yakimtsova L. B., Nareiko E. I., Brazhnikov M. M., Matusevich Yu. I. Effect of sodium hydroxide concentration on the chemical composition of nitrone D hydrolyzate. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 1999, no. 4, pp. 95–97 (in Russian).

14. Kuptsov A. H., Zhizhin G. N. Fourier spectra of Raman scattering and infra-red absorption of polymers. Handbook. Moscow, FIZMATLIT Publ., 2001. 656 p. (in Russian).

15. Peniche C., Arguelles-Monal W., Davidenko N., Sastre R., Gallardo A., San R. J. Self-curing membranes of chitosan/ PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials, 1999, vol. 20, no. 20, pp. 1869–1878. https://doi.org/10.1016/s0142-9612(99)00048-4

16. Islam N., Wang H., Maqbool F., Ferro V. In vitro enzymatic digestibility of glutaraldehyde-crosslinked chitosan nanoparticles in lysozyme solution and their applicability in pulmonary drug delivery. Molecules, 2019, vol. 24, no 7, pp. 1271–1288. https://doi.org/10.3390/molecules24071271

17. Nanda R., Sasmal A., Nayak P. L. Preparation and characterization of chitosan–polylactide composites blended with Cloisite 30B for control release of the anticancer drug paclitaxel. Carbohydrate Polymers, 2011, vol. 83, no. 2, pp. 988–994. https://doi.org/10.1016/J.CARBPOL.2010.09.009

18. Chen S.-Ch., Wu Y.-Ch., Mi F.-L., Lin Y.-H., Yu L.-C., Sung H.-W. A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 2004, vol. 96, no. 2, pp. 285–300. https://doi.org/10.1016/j.jconrel.2004.02.002

19. Ahmed G. I., Ahmed Z. S., Hamada A. E.-W., Mahmoud M. S. Synthesis of Poly(Acrylamide-Graft-Chitosan) Hydrogel: Optimization of The Grafting Parameters and Swelling Studies. American Journal of Polymer Science and Technology, 2019, vol. 5, no. 2, pp. 55–62. https://doi.org/10.11648/j.ajpst.20190502.13

20. Saleh A. S., Ibrahim A. G., Abdelhai F., Elsharm E. M., Metwally E., Siyam T. Preparation of poly(chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu(II) and Ni(II) ions. Radiation Physics and Chemistry, 2017, vol. 134, pp. 33–39. https://doi.org/10.1016/j.radphyschem.2017.01.019

21. Casimiro M. H., Botelho M. L., Leal J. P., Gil M. H. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan. Radiation Physics and Chemistry, 2005, vol. 72, no. 6, pp. 731–735. https://doi.org/10.1016/j.radphyschem.2004.04.029

22. Neto C. G. T., Giacometti J. A., Job A. E., Ferreira F. C., Fonseca J. L. C., Pereira M. R. Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers, 2005, vol. 62, no. 2, pp. 97–103. https://doi.org/10.1016/j.carbpol.2005.02.022

23. Qiao C., Ma X., Wang X., Liu L. Structure and properties of chitosan flms: Effect of the type of solvent acid. LWT – Food Science and Technology, 2021, vol. 135, 109984 (6 p.). https://doi.org/10.1016/j.lwt.2020.109984

24. Leung W. M., Axelson D. E., Van Dyke J. D. Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). Journal of Polymer Science Part A: Polymer Chemistry, 1987, vol. 25, no. 7, pp. 1825–1846. https://doi.org/10.1002/pola.1987.080250711

25. Ageev E. P., Vikhoreva G. A., Zotkin M. A., Matushkina N. N., Gerasimov V. I., Zezin S. B., Obolonkova E. S. Structure and transport behavior of heat-treated chitosan films. Vysokomolekulyarnye soedineniya. Seriya A. = Polymer science. Series A, 2004, vol. 46, no. 12. pp. 2035–2041 (in Russian).

26. Kobaisi M. A., Murugaraj P., Mainwaring D. E. Origin and Influence of Water-Induced Chain Relaxation Phenomena in Chitosan Biopolymers. Journal of Polymer Science Part B: Polymer Physics, 2012, vol. 50, no. 6, pp. 403–414. https://doi.org/10.1002/polb.23023

27. Saleh A. S., Ibrahim A. G., Elsharm E. M., Metwally E., Siyam T. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions. Radiation Physics and Chemistry, 2018, vol. 144, pp. 116–124. https://doi.org/10.1016/j.radphyschem.2017.11.018

28. Rhazi M., Desbrières J., Tolaimate A., Rinaudo M., Votterod P., Alaguic A. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer, 2002, vol. 43, no. 4, pp. 1267–1276. https://doi.org/10.1016/S0032-3861(01)00685-1

29. Pomogailo A. D., Dzhardimalieva G. I., Kestelman V. N. Macromolecular metal carboxylates and their nanocomposites. Springer series in materials science. Berlin, Heidelberg, Springer-Verlag, 2010. 305 р. https://doi.org/10.1007/978-3-642-10574-6

30. Fomina E. K., Butovskaya G. V., Krul L. P., Grinyuk E. V., Yakimenko O. V. Qualitative composition determination of macromolecular complexes of Cu(II), Zn(II), Co(II), Mn(II) ions with copolymer of аcrylamide and sodium acrylate. Zhurnal belorusskogo gosudarstvennogo universiteta. Himiya = Journal of the Belarusian State University. Chemistry, 2017, no. 2, pp. 94–109 (in Russian).


Review

Views: 412


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)