Synthesis of gold nanorods using a mixed reducing agent hydroquinone–ascorbic acid
https://doi.org/10.29235/1561-8331-2023-59-4-271-284
Abstract
A new mixed reduction system for the synthesis of gold nanorods (NRs), including ascorbic acid and hydro- quinone, has been proposed. Dependence of NRs longitudinal plasmon resonance band position on the concentration of silver ions, ascorbic acid and hydroquinone during synthesis were found, which makes it possible to obtain NRs with required op- tical properties. It was found that when using a mixed reducing agent, higher monodispersity and morphological yield can be achieved as compared to individual reducing agents, which is especially important for obtaining short NRs with a maximum of longitudinal plasmon resonance in the region of 600–700 nm.
About the Authors
O. S. KulakovichBelarus
Kulakovich Olga S. – Ph. D. (Chemistry), Leading Reseacher
68, Nezalezhnasti Ave., 220072, Minsk
P. D. Raetsky
Belarus
Raetsky Pavel D. – Junior Researcher
68, Nezalezhnasti Ave., 220072, Minsk
O. V. Vershinina
Russian Federation
Vershinina Olesya V. – Engineer. Center for Testing Functional Materials
9, Institutskiy per., 141701, Dolgoprudny
L. L. Trotsyuk
Belarus
Trotsiuk Lyudmila L. – Ph. D. (Chemistry), Senior Researcher
68, Nezalezhnasti Ave., 220072, Minsk
References
1. Meng L., Zhan, J., Li H., Zhao W., Zhao T. Preparation and Progress in Application of Gold Nanorods. Journal of Nanomaterials, 2019, vol. 2019, Art. ID 4925702. https://doi.org/10.1155/2019/4925702
2. Trotsiuk L. L., Kulakovich O. S., Shabunya-Klyachkovskaya E. V., Vaschenko S., Gaponenko S. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy. Doklady Nacionalʹnoj akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 4, pp. 44–48 (in Russian).
3. Huang X., El-Sayed I. H., Qian W., El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, vol. 128, no. 6, pp. 2115–2120. https://doi.org/10.1021/ja057254a
4. Cole J. R., Mirin N. A., Knight M. W., Goodrich G. P., Halas N. J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. The Journal of Physical Chemistry C, 2009, vol. 113, no. 28, pp. 12090–12094. https://doi.org/10.1021/jp9003592
5. Mbalaha Z. S., Edwards P. R., Birch D. J., Chen Y. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano, 2009, vol. 3, no. 1, pp. 80–86. https://doi.org/10.1021/acsomega.9b01200
6. Jana N. R., Gearheart L., Murphy C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 2001, vol. 13, no. 18, pp. 1389–1393. https://doi.org/10.1002/1521-4095(200109)13:183.0.CO;2-F
7. Nikoobakht B., El-Sayed M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003, vol. 15, no. 10, pp. 1957–1962. https://doi.org/10.1021/cm020732l
8. Orendorff C. J., Murph, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. Journal of Physical Chemistry B, 2006, vol. 110, no. 9, pp. 3990–3994. https://doi.org/10.1021/jp0570972
9. Jana N. R., Gearheart L., Murphy C. J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of materials, 2001, vol. 13, no. 7, pp. 2313–2322. https://doi.org/10.1021/cm000662n
10. Khanal B. P., Zubare, E. R. Purification of High Aspect Ratio Gold Nanorods: Complete Removal of Platelets. Journal of the American Chemical Society, 2008, vol. 130, no. 38, pp. 12634–12635. https://doi.org/10.1021/ja806043p
11. Boksebeld M., Blanchard N. P., Jaffal A., Chevolot Y., Monnier V. Shape-selective purification of gold nanorods with low aspect ratio using a simple centrifugation method. Gold Bulletin, 2017, vol. 50, no. 1, pp. 69–76. https://doi.org/10.1007/s13404-017-0197-9
12. Guo Z., Fan X., Xu L., Lu X., Gu C., Bian Z. [et al.]. Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation. Chemical Communications, 2011, vol. 47, no. 14, pp. 4180–4182. https://doi.org/10.1039/C0CC04612D
13. Burrows N. D., Harvey S., Idesis F. A., Murphy C. J. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments. Langmuir, 2017, vol. 33, pp. 1891−1907. https://doi.org/10.1021/acs.langmuir.6b03606
14. Tong W., Walsh M. J., Mulvaney P., Etheridge J., Funston A. M. Control of Symmetry Breaking Size and Aspect Ratio in Gold Nanorods: Underlying Role of Silver Nitrate. The Journal of Physical Chemistry C, 2017, vol. 121, no. 6, pp. 3549–3559. https://doi.org/10.1021/acs.jpcc.6b10343
15. Liu X., Yao J., Luo J., Duan X., Yao Y., Liu T. Effect of Growth Temperature on Tailoring the Size and Aspect Ratio of Gold Nanorods. Langmuir, 2017, vol. 33, pp. 7479−7485. https://doi.org/10.1021/acs.langmuir.7b01635
16. Hormozi-Nezhad M. R., Robatjazi H., Jalali-Heravi M. Thorough tuning of the aspect ratio of gold nanorods using response surface methodology. Analytica Сhimiea Acta, 2013, vol. 779, pp. 14–21. https://doi.org/10.1016/j.aca.2013.03.056
17. Seibt S., Zhang H., Mudie S., Förster S., Mulvaney P. Growth of Gold Nanorods: A SAXS Study. The Journal of Physical Chemistry C, 2021, vol. 125, no. 36, pp. 19947–19960. https://doi.org/10.1021/acs.jpcc.1c06778
18. Vigderman L., Zubarev E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 2013, vol. 25, no. 8, pp. 1450–1457. https://doi.org/10.1021/cm303661d
19. Morasso C., Picciolini S., Schiumarini D., Mehn D., Ojea-Jiménez I., Zanchetta G. [et al.]. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods. Journal of Nanoparticle Research, 2015, vol. 17, no. 8, pp. 330. https://doi.org/10.1007/s11051-015-3136-9
20. Picciolini S., Mehn D., Ojea-Jiménez I., Gramatica F., Morasso C. Hydroquinone Based Synthesis of Gold Nanorods. JoVE (Journal of Visualized Experiments), 2016, vol. 114, pp. 54319. https://doi.org/10.3791/54319
21. Gallagher R., Zhang X., Altomare A., Lawrence D., Shawver N., Tran N. [et al.]. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Research, 2021, vol.14, pp. 1167–1174. https://doi.org/10.1007/s12274-020-3167-0
22. Scarabelli L., Grzelczak M., Liz-Marzán L. M. Tuning gold nanorod synthesis through prereduction with salicylic acid. Chemistry of Materials, 2013, vol. 25, no. 21, pp. 4232–4238. https://doi.org/10.1021/cm402177b
23. Eustis S., El-Sayed M. A. Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. The Journal of Physical Chemistry B, 2006, vol. 100, no. 4, pp. 1–8. https://doi.org/10.1063/1.2244520
24. Brioude A., Jiang X. C., Pileni M. P. Optical properties of gold nanorods: DDA simulations supported by experiments. The Journal of Physical Chemistry B, 2005, vol. 109, no. 27, pp. 13138–13142. https://doi.org/10.1021/jp0507288
25. Tur’yan Y. I., Kohen R. Formal redox potentials of the dehydro-l-ascorbic acid/l-ascorbic acid system. Journal of Electroanalytical Chemistry, 1995, vol. 380, no. 1–2, pp. 273–277. https://doi.org/10.1016/0022-0728(94)03524-7
26. Huynh M. T., Anson C. W., Cavell A. C., Stahl S. S., Hammes-Schiffer S. Quinone 1 e- and 2 e-/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. Journal of the American Chemical Society, 2016, vol. 138, no. 49, pp. 15903–15910. https://doi.org/10.1021/jacs.6b05797
27. John C. L., Strating S. L., Shephard K. A., Zhao J. X. Reproducibly synthesize gold nanorods and maintain their stability. RSC Advances, 2013, vol. 3, no. 27, pp. 10909–10918. https://doi.org/10.1039/C3RA41521J
28. Ward C. J., Tronndorf R., Eustes A. S., Auad M. L., Davis E. W. Seed-Mediated Growth of Gold Nanorods: Limits of Length to Diameter Ratio Control. Journal of Nanomaterials, 2014, vol. 2014, pp. 1–7. https://doi.org/10.1155/2014/765618
29. Li H., Zheng G., Xu L., Su W. Influence of amount of CTAB and ascorbic acid concentration on localized surface plasmon resonance property of gold nanorod. Optik (Stuttg), 2014, vol. 125, no. 9, pp. 2044–2047. https://doi.org/10.1016/j.ijleo.2013.07.169
30. Walsh M. J., Tong W., Katz-Boon H., Mulvaney P., Etheridge J., Funston A. M. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods. Accounts of Chemical Research, 2017, vol. 50, no. 12, pp. 2925–2935. https://doi.org/10.1021/acs.accounts.7b00313
31. Koktysh D. S., Andreev A. N., Belenkov V. V., Rakhmanov S. K. Investigation of the effect of superadditive action of reducing agents in the process of photographic development in a solution containing modifying components. Vestnik Belorusskogo gosudarstvennogo universiteta. Ser. 2, Khimiya. Biologiya. Geografiya = Bulletin of the Belarusian State University, series 2, Chemistry. Biology. Geography, 2000, no. 1, pp. 6–9 (in Russian).
32. Bomm J. Von Gold Plasmonen und Exzitonen – Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln. Potsdam, 2012. 151 s. (in German).
33. Scarabelli L., Sánchez-Iglesias A., Pérez-Juste J., Liz-Marzán L. M. Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters, 2015, vol. 6, no. 21, pp. 4270–4279. https://doi.org/10.1021/acs.jpclett.5b02123
34. Zuloaga J., Prodan E., Nordlander P.Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods. ACS Nano, 2010, vol. 4, no. 9, pp. 5269–5276. https://doi.org/10.1021/nn101589n
35. Elfeky S. A., Mahmoud S. E., Youssef A. F. Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. Journal of Advanced Research, 2017, vol. 8, no. 4, pp. 435–443. https://doi.org/10.1016/j.jare.2017.06.002
36. Lin C., Fan B., Zhang J. X., Yang X., Zhang H. Study on lead ion wastewater treatment of self-assembled film. Desalination and Water Treatment, 2016, vol. 57, no. 45, pp. 21627–21633. https://doi.org/10.1080/19443994.2015.1121839
37. Ahmed I., Haque A., Bhattacharyya S., Patra P., Plaisier J. R., Perissinotto F., Bal J. K. Vitamin C/Stearic Acid Hybrid Monolayer Adsorption at Air-Water and Air-Solid Interfaces. ACS Omega, 2018, vol. 3, no. 11, pp. 15789–15798. https://doi.org/10.1021/acsomega.8b02235