Preview

Proceedings of the National Academy of Sciences of Belarus, Chemical Series

Advanced search

Synthesis of thiol-containing DNA-oligonucleotides using a phosphoramidite reagent based on trans -4-hydroxy-L-prolinol

https://doi.org/10.29235/1561-8331-2024-60-1-36-44

Abstract

In this work, a new phosphoramidite reagent for the preparation of thiol-modified oligonucleotides was synthesized. Thiol-specific reagents have been used to demonstrate the reactivity of thiol groups. After modification, conjugates were purified via gel-filtration and characterized with HPLC-MS.

About the Authors

Y. P. Lamekina
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Yuliya P. Lamekina – Researcher.

13, Surganov Str., 220072, Minsk



T. P. Seviarynchyk
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Tatsiana P. Seviarynchyk – Researcher.

13, Surganov Str., 220072, Minsk



E. A. Ulashchik
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Egor A. Ulashchik – Researcher.

13, Surganov Str., 220072, Minsk



T. P. Akhlamionok
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Tatsiana P. Akhlamionok – Junior Researcher.

13, Surganov Str., 220072, Minsk



P. Y. Baryshchyk
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Palina Y. Baryshchyk – Junior Researcher.

13, Surganov Str., 220072, Minsk



B. V. Ranishenka
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Bahdan V. Ranishenka – Ph. D. (Chemistry), Researcher.

13, Surganov Str., 220072, Minsk



V. V. Shmanai
Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vadim V. Shmanai – Ph. D. (Chemistry), Head of the Laboratory.

13, Surganov Str., 220072, Minsk



References

1. Connoly B. A., Rider P. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes. Nucleic Acids Research, 1985, vol. 13, no. 12, pp. 4485–4502. https://doi.org/10.1093/nar/13.12.4485

2. Beaucage S. L., Iyer R. P. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron, 1993, vol. 49, no. 10, pp. 1925–1963. https://doi.org/10.1016/S0040-4020(01)86295-5

3. Nakagami S., Matsunaga H., Oka N., Yamane A. Preparation of enzyme-conjugated DNA probe and application to the universal probe system. Analytical Bicohemistry, 1991, vol. 198, no. 1, pp. 75–79. https://doi.org/10.1016/0003-2697(91)90508-q

4. Ghosh S. S., Kao P. M., McCue A. W., Chappelle H. L. Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjugate Chemistry, 1990, vol. 1, no. 1, pp. 71–76. https://doi.org/10.1021/bc00001a009

5. Demers L. M., Mirkin C. A., Mucic R. C., Reynolds R. A. 3rd, Letsinger R. L., Elghanian R., Viswanadham G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analytical Chemistry, 2000, vol. 72, no. 22, pp. 5535–5541. https://doi.org/10.1021/ac0006627

6. Lee J. S., Han M. S., Mirkin C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition, 2007, vol. 46, no. 22, pp. 4093–4096. https://doi.org/10.1002/anie.200700269

7. Armarego W. L. F., Chai C. L. L. Purification of laboratory chemicals. 6th ed. Burlington, Butterworth-Heinemann, Elsevier Inc., 2009. 752 p.

8. Bannwarth W., Trzeciak A. A simple and effective chemical phosphorylation procedure for biomolecules. Helvetica Chimica Acta, 1987, vol. 70, no. 1, pp. 175–186. https://doi.org/10.1002/hlca.19870700122

9. Caruthers M. H., Barone A. D., Beaucage S. L., Dodds D. R., Fisher E. F., McBride L. J., Matteucci M., Stabinsky Z., Tang J.-Y. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods in Enzymology, 1987, vol. 154, pp. 287–313. https://doi.org/10.1016/0076-6879(87)54081-2

10. Tatulchenkov M. Yu., Prokhorenko I. A., Kvach M. V., Navakouski M. E., Stepanova I. A., Pilchenko N. V., Gontarev S. V., Sharko O. L., Korshun V. A., Shmanai V. V. Phosphoramidite reagents and solid-phase supports based on hydroxyprolinol for the synthesis of modified oligonucleotides. Russian Journal of Bioorganic Chemistry, 2017, vol. 43, no. 4, pp. 386–396. https://doi.org/10.1134/s1068162017040148

11. Streck R., Barnes A. J. Solvent effects on infrared, 13C and 31P NMR spectra of trimethyl phosphate: Part 1. Single solvent systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, vol. 55, no. 5, pp. 1049–1057. https://doi.org/10.1016/S1386-1425(98)00277-7

12. Tecilla P., Jubian V., Hamilton A. D. Synthetic hydrogen bonding receptors as models of transacylase enzymes. Tetrahedron, 1995, vol. 51, no. 2, pp. 435–448. https://doi.org/10.1016/0040-4020(94)00907-C

13. Fomich M. A., Kvach M. V., Navakouski M. J., Weise C., Baranovsky A. V., Korshun V. A., Shmanai V. V. Azide phosphoramidite in direct synthesis of azide-modified oligonucleotides. Organic Letters, 2014, vol. 16, no. 17, pp. 4590–4593. https://doi.org/10.1021/ol502155g


Review

Views: 559


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8331 (Print)
ISSN 2524-2342 (Online)