Sensory layers of poly(methyl metacrylate) for capacitive sensors for analysis of the content of heavy metal cations in water
https://doi.org/10.29235/1561-8331-2024-60-1-81-88
Abstract
The results of using poly(methyl methacrylate) coatings for the development of the capacitive sensors for analyzing the content of heavy metals in water (using Ni2+ ions as example) are presented. Structural and morphological characteristics of the formed conductive nickel layer and nanostructured poly(methyl methacrylate) films were studied by atomic force microscopy. Based on the analysis of the dependence of the capacitive characteristics of the original sensor on the frequency at different concentrations of Ni2+ ions, the following operating characteristics of the sensor were established: response time – 5 min; operating range of Ni2+ ion concentrations: 1 ‧ 10–3–50 mM; lower detection limit ≈ 0,06 mg/l. It is shown that the formation of a poly(methyl methacrylate) coating on a conductive nickel layer by the spin coating method increases the service life of the sensor to eight cycles while maintaining the level of sensor sensitivity.
About the Authors
D. V. SapsaliouBelarus
Dmitry V. Sapsaliou – Junior researcher, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus; Postgraduate Student, Belarusian State Pedagogical University named after Maxim Tank.
15, P. Brovka Str., 220072, Minsk; 18, Savieckaja Str., 220030, Minsk
G. B. Melnikova
Belarus
Galina B. Melnikova – Ph. D. (Engineering), Senior Researcher. A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
15, P. Brovka Str., 220072, Minsk
A. V. Aksiuchyts
Belarus
Aliaksandr V. Aksiuchyts – Postgraduate student, Junior researcher. Belarusian State University of Informatics and Radioelectronics.
6, P. Brovka Str., 220013, Minsk
T. N. Tolstaya
Belarus
Tatyana N. Tolstaya – Researcher. A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus.
15, P. Brovka Str., 220072, Minsk
D. A. Kotov
Belarus
Dmitry A. Kotov – Ph. D (Engineering), Associate Professor. Associate Professor of the Department. Belarusian State University of Informatics and Radioelectronics.
6, P. Brovka Str., 220013, Minsk
S. A. Chizhik
Belarus
Sergei A. Chizhik – Academician, D. Sc. (Engineering), Professor, Chief researcher, A.V. Luikov Heat and Mass transfer Institute of the National Academy of Sciences of Belarus.
15, P. Brovka Str., 220072, Minsk
References
1. Ferrari V., Prudenziati M. Printed thick-film capacitive sensors. Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics, Woodhead Publishing Limited, 2012, pp.193–220. https://doi.org/10.1533/9780857096210.2.193
2. Oertel B., Hiibert Th., Heinze D., Banach U. Capacitive sensor system for measurement of temperature and humidity. Fresenius’ Journal of Analytical Chemistry, 1994, vol. 349, pp. 391–393. https://doi.org/10.1007/BF00326605
3. El-Akaad S., Mohamed M. A., Abdelwahab N. S., Abdelaleem E. A., De Saeger S., Beloglazova N. Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Scientific Reports, 2020, vol. 10. P. 14479. https://doi.org/10.1038/s41598-020-71325-y
4. Hu J., Yew C.-H. T., Chen X., Feng S., Yang Q., Wang S., Wee W.-H., Pingguan-Murphy B., Lu T. J., Xu F. Paper-based capacitive sensors for identification and quantification of chemicals at the point of care. Talanta, 2017, vol. 165, pp. 419–428. https://doi.org/10.1016/j.talanta.2016.12.086
5. Bindra P., Hazra A. Capacitive gas and vapor sensors using nanomaterials. Journal of Materials Science – Materials in Electronics, 2018, vol. 29, pp. 6129–6148. https://doi.org/10.1007/s10854-018-8606-2
6. Leibl N., Haupt K., Gonzato C., Duma L. Molecularly Imprinted Polymers for Chemical Sensing: A Tutorial Review. Chemosensors, 2021, vol. 9, no. 6, pp. 123–141. https://doi.org/10.3390/chemosensors9060123
7. Jin Mei C., Ainliah Alang Ahmad S. A review on the determination heavy metals ions using calixarene-based electrochemical sensors. Arabian Journal of Chemistry, 2021, vol. 14, iss. 9, pp. 103303. https://doi.org/10.1016/j.arabjc.2021.103303
8. Bontidean I., Ahlqvist J., Mulchandani A., Chen W., Bae W., Mehra R. K., Mortari A., Csöregi E. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosensors and Bioelectronics, 2003, vol. 18, no. 5–6, pp. 547–553. https://doi.org/10.1016/s0956-5663(03)00026-5
9. Radovanović M., Vasiljević D., Krstić D., Antić I., Korzhyk O., Stojanović G., Škrbić B. D. Flexible sensors platform for determination of cadmium concentration in soil samples. Computers and Electronics in Agriculture, 2019, vol. 166, pp. 105001. https://doi.org/10.1016/j.compag.2019.105001
10. Yu H., Sun A., Liu Y., Zhou Y., Fan P., Luo J., Zhong A. Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection. Sensors and Actuators B: Chemical, 2021, vol. 346, pp. 130488. https:// doi.org/10.1016/j.snb.2021.130488
11. Hammarling K., Engholm M., Andersson H., Sandberg M., Nilsson, H.-E. Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate. Chemosensors, 2018, vol. 6, no. 3, pp. 30. https://doi.org/10.3390/chemosensors6030030
12. Offenzeller C., Hintermüller M. A., Hilber W., Jakoby B. A dielectric coating for improved performance of capacitive sensors in all-polymer microfluidic devices. Microelectronic Engineering, 2020, vol. 223, pp. 111220. https://doi.org/10.1016/j.mee.2020.111220
13. Igreja R., Dias C. J. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness. Sensors and Actuators B: Chemical, 2006, vol. 115, no. 1, pp. 69–78. https://doi.org/10.1016/j.snb.2005.08.019
14. Patil H. K., Deshmukh M. A., Bodkhe G. A., Shirsat M. D. Sensitive detection of heavy metal ions: An electrochemical approach. International Journal of Modern Physics B, 2018, vol. 32, no. 19, pp. 1840042. https://doi.org/10.1142/s0217979218400428
15. Chabbah T., Abderrazak H., Souissi R., Saint-Martin P., Casabianca H., Chatti S., Mercier R., Rassas I., Errachid A., Hammami M., Jaffrezic-Renault N. A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions. Chemosensors, 2020, vol. 8, no. 2, pp. 34. https://doi.org/10.3390/chemosensors8020034
16. Kholimatussadiah S., Prijo T. A. A portable and low-cost parallel-plate capacitor sensor for alkali and heavy metal ions detection. Journal of Advanced Dielectrics, 2018, vol. 8, no. 4, art. no. 1850026. https://doi.org/10.1142/s2010135x18500261
17. Wiziack N. K. L., Paterno L. G., Fonseca F. J., Mattoso L. H. C. Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films. Sensors and Actuators B: Chemical, 2007, vol. 122, iss. 2, pp. 484–492. https://doi.org/10.1016/j.snb.2006.06.016
18. Sapsaliou D. V., Melnikova G. B., Lapitskaya V. А., Tolstaya T. N., Kuznetsova T. A., Kotov D. A., Chizhik S. A. Thin composite polymethyl methacrylate films with silicon dioxide nanoparticles. Zhurnal Belorusskogo gosudarstvennogo universiteta. Khimiya = Journal of the Belarusian State University. Chemistry, 2021, no. 2, pp. 36–49 (in Russian). https://doi.org/10.33581/2520-257X-2021-2-36-49