Thermal and chemical expansion of layered oxygen-deficient double perovskites
https://doi.org/10.29235/1561-8331-2024-60-2-95-104
Abstract
Layered oxygen-deficient double perovskites (ODP) based on the rare-earth elements (REE), barium and 3d-metals (Fe, Co, Cu etc.) are characterized by high values of electrical conductivity and high electrochemical activity in oxygen reduction reaction, and are considered as prospective cathode materials for intermediate-temperature solid oxide fuel cells (SOFC) on the base of proton- and oxygen-ion conducting solid electrolytes (SE). Effective cathode materials should be thermomechanically compatible with materials of SE, which tаkes place when the values of their thermal expansion coefficients (TEC) are close to each other. Due to this the study of thermal expansion of ODP as well as the isotation of different contributions in it (thermal, chemical, spin etc.), is of considerable interest. In this work using dilatometric method the thermal expansion of NdBa1–xSrxFeCo0,5Cu0,5O6−δ (0.0 ≤ х ≤ 1.0) (NBSFCC) ODP was studied using dilatometric method. It was established that the values of average linear thermal expansion coefficient (LTEC) (α) of the samples sharply increased from (15.1–16.2) · 10–6 K–1 at Т < 630–920 K to (18.9–23.5) 10–6 K–1 at Т > 630–920 K due to the evolution of weaklybonded oxygen from the samples. Values of α in the low-temperature region increase with increasing of values of their oxygen nonstoichiometry index (δ), and in the high-temperature one increase with the x increasing due to the increment of chemical contribution in the samples expansion. Based of the results of dilatometry, thermogravimetry, and iodometry, the thermal and chemical contributions in the expansion оn NBSFCC were isolated, and the effect of crystal structure, cationic and anionic composition of NBSFCC ODP on the values of their thermal and linear chemical expansion coefficient (LCEC, αδ ) was investigated. It was found, that LCEC values of the samples sharply increased from (8.6–11.8) · 10–3 at (х < 0.5) to (12.6–15.8) · 10–3 at (х > 0.5) when transition from ordered tetragonal (х < 0.5) to disordered cubic (х > 0.5) phase took place. It was shown, that dependences of LTEC and LCEC of NBSFCC phases on their crystal structure and chemical compositions obtained in this work are in good accordance with the analogous dependences determined earlier for the ODP of other types.
Keywords
About the Authors
А. I. KlyndyukBelarus
Klyndyuk Andrei I. – Ph. D. (Chemistry), Associate Professor
13a, Sverdlov Str., 220006, Minsk
Ya. Yu. Zhuravleva
Belarus
Zhuravleva Yana Yu. – Postgraduate Student
13a, Sverdlov Str., 220006, Minsk
References
1. Perry N. H., Marrocchelli D., Bishop S. R., Tuller H. L. Understanding and controlling chemo-mechanical coupling in perovskite oxides. Journal of the Electrochemical Society, 2016, vol. 72, no. 24, pp. 1–8. https://doi.org/10.1149/07224.0001ecst
2. Istomin S. Ya., Antipov E. V. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews, 2013, vol. 82, no. 7, pp. 686–700 (in Russian). https://doi.org/10.1070/RC2013v082n07ABEH004390
3. Zhang M., Jeerh G., Zou P., Lan R., Wang M., Wang H., Tao S. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, vol. 49, pp. 351–377. https://doi.org/10.1016/j.mattod.2021.05.004
4. Løken A., Ricote S., Wachowski S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals, 2018, vol. 8, pp. 365. https://doi.org/10.3390/cryst8090365
5. Nikonov A. V., Kuterbekov K. A., Bekmyrza K. Zh., Pavzderin N. B. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian Journal of Physics and Functional Materials, 2018, vol. 2, no. 3, pp. 274–292. https://doi.org/10.29317/ejpfm.2018020309
6. Jacobson A. J. Materials for solid oxide fuel cells. Chemistry of Materials, 2010, vol. 22, pp. 660–674. https://doi.org/10.1021/cm902640j
7. Klyndyuk A. I., Chizhova E. A., Kharytonau D. S., Medvedev D. A. Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials, 2022, vol. 15, no. 1, pp. 141. https://doi.org/10.3390/ma15010141
8. Hanif M. B., Rauf S., Motola M., Babar Z.U.D., Li C.-J. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Materials Research Bulletin, 2022, vol. 146, pp. 111612. https://doi.org/10.1016/j.materresbull.2021.111612
9. Hanif M. B., Motola M., Rauf S., Li C.-J., Li C.-X. Recent advancements, doping strategies and the future prospective of perovskite-based solid oxide fuel cells for energy conversion. Chemical Engineering Journal, 2022, vol. 428, pp. 132603. https://doi.org/10.1016/j.cej.2021.132603
10. Kumar V., Khandale R. A review on recent progress and selection of cobalt-based cathode materials for low temperature solid oxide fuel cells. Renewable and Sustainable Energy, 2022, vol. 156, pp. 111985. https://doi.org/10.1016/j.rser.2021.111985
11. Klyndyuk A. I., Chizhova E. A. RBaCuCoO5+δ (R = Nd, Sm, Gd) layered cuprocobaltites: synthesis, structure and properties. Russian Journal of Inorganic Chemistry, 2009, vol. 54, no. 7, pp. 1009–1013 (in Russian). https://doi.org/10.1134/S0036023609070031
12. Klyndyuk A. I. New perovskite oxides LaBaMCoO5+δ (M = Fe, Cu): synthesis, structure and properties. Physics of the Solid State, 2009, vol. 51, no. 2, pp. 270–274 (in Russian). https://doi.org/10.1134/S1063783409020103
13. Cherepanov V. A., Aksenova T. V., Gavrilova L. Ya., Mikhaleva K. N. Structure, nonstoichiometry and thermal expansion of the NdBa(Co,Fe)2O5+δ layered perovskite. Solid State Ionics, 2011, vol. 188, no. 1, pp. 53–57. https://doi.org/10.1016/j.ssi.2010.10.021
14. Aksenova T. V., Gavrilova L. Ya., Tsvetkov D. S., Voronin V. I., Cherepanov V. A. Crystal structure and physicochemical properties of layered perovskite like phases LnBaCo2O5+δ. Russian Journal of Physical Chemistry A, 2011, vol. 85, no. 3, pp. 493–499 (in Russian). https://doi.org/10.1134/S0036024411030022
15. Zhuravleva T. A. Electrophysical properties of layered perovskites LnBaCo2–xCuxO5+δ (Ln = Sm, Nd) for solid oxide fuel cells. Russian Journal of Electrochemistry, 2011, vol. 47, no. 6, pp. 676–680 (in Russian). https://doi.org/10.1134/S1023193511060164
16. Yao C., Zhang H., Liu X., Meng J. Investigation of layered perovskite NdBa0,5Sr0,25Ca0,25Co2O5+δ as cathode for solid oxide fuel cells. Ceramics International, 2018, vol. 44, pp. 12048–12054. https://doi.org/10.1016/j.ceramint.2018.03.206
17. Xia W., Liu X., Jin F., Jia X., Shen Y., Li J. Evaluation of calcium codoping in double perovskite PrBaCo2O5+δ as cathode for IT–SOFCs. Electrochimica Acta, 2020, vol. 364, pp. 137274. https://doi.org/10.1016/j.electacta.2020.137274
18. Jin F., Shen Y., Wang R., He T. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate temperature solid-oxide fuel cells. Journal of Power Sources, 2013, vol. 234, pp. 244–251. https://doi.org/10.1016/j.jpowsour.2013.01.172
19. Yin J., Yin Y., Lu J., Zhang C., Minh N., Ma Z. Structure and properties of novel cobalt-free oxides NdxSr1–xFe0.8Cu0.2O3–δ (0.30 ≤ x ≤ 0.70) as cathodes of intermediate temperature solid oxide fuel cells. Russian Journal of Physical Chemistry, 2014, vol. 118, no. 25, pp. 13357–13368. https://doi.org/10.1021/jp500371w
20. Pang S., Su. Y., Yang G., Shen X. Enhanced electrochemical performance of Ca-doped NdBa1–xCaxCoCuO5+δ as cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2018, vol. 44, no. 17, pp. 21902–21907. https://doi.org/10.1016/j.ceramint.2018.08.301
21. Kong X., Liu G., Yi Z., Ding X. NdBaCu2O5+δ and NdBa0.5Sr0.5Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, vol. 40, pp. 16477–16483. https://doi.org/10.1016/j.ijhydene.2015.09.006
22. Klyndyuk A. I., Chizhova E. A. Crystal structure, thermal expansion, and electrical properties of layered oxides LnBa(Fe,Co,Cu)2O5+δ (Ln = Nd, Sm, Gd). Glass Physics and Chemistry, 2014, vol. 40, iss. 46, pp. 124–128 (in Russian). https://doi.org/10.1134/S108765961401012X
23. Klyndyuk A. I., Chizhova E. A. Effect of cation deficiency on the structure and properties of layered lanthanum barium ferrocuprate. Russian Journal of Inorganic Chemistry, 2008, vol. 53, no. 4, pp. 524–529 (in Russian). https://doi.org/10.1134/S0036023608040074
24. Klyndyuk A. I. Structure and charge-transport properties of LnBaCuCoO5+δ (Ln = Y, Dy) cuprocobaltites. Russian Journal of Inorganic Chemistry, 2009, vol. 54, no. 7, pp. 1014–1017 (in Russian). https://doi.org/10.1134/S0036023609070043
25. Klyndyuk A. I., Chizhova E. A. Physicochemical properties of La(Ba,M)CuFeO5+δ (M – Sr, Ca, Mg) solid solutions. Inorganic materials, 2006, vol. 42, no. 4, pp. 436–442 (in Russian). https://doi.org/10.1134/S0020168506040182
26. Klyndyuk A. I. Chizhova E. A. Properties of RBaCuFeO5+δ (R – Y, La, Pr, Nd, Sm–Lu). Inorganic Materials, 2006, vol. 42, no. 5, pp. 550–561 (in Russian). https://doi.org/10.1134/S0020168506050189
27. Klyndyuk A. I. Structure and properties of the layered compound НоВаСuСоO5+δ. Inorganic Materials, 2006, vol. 45, no. 7, pp. 806–808 (in Russian). https://doi.org/10.1134/S0020168509070188
28. Klyndyuk A. I. Structure, thermal expansion, and electrical properties of the PrBaMCoO5+δ (M – Cu, Fe) layered oxides. Inorganic Materials, 2009, vol. 45, no. 8, pp. 942–945 (in Russian). https://doi.org/10.1134/S0020168509080226
29. Klyndyuk A. I., Chizhova E. A. Structure and electrophsysical properties of ferrocobaltites LnBaFeCoO5+δ (Ln = Tb, Dy, Ho, Y). Physics of the Solid State, 2009, vol. 51, no. 4, pp. 657–661 (in Russian). https://doi.org/10.1134/S1063783409040015
30. Klyndyuk A. I., Chizhova Ye. A., Tugova Ye. A. Effect of rare earth element intersubstitution on structure and properties of (Pr,Nd,Sm)BaCoFeO5+δ solid solutions. Vestsі Natsyyanal’naiakademііnavuk Belarusі. Seryya khіmіchnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 2014, vol. 1, pp. 8–11. (in Russian)
31. Szpunar, I., Strandbakke R., Sørby M. H., Wachowsky S. L., Balaguer M., Tarach M., Serra J. M. Witkowska A., Dzik E., Norby T., Gazda M., Mielewczyk-Gryn. High-temperature structural and electrical properties of BaLnCo2O6-δ positrodes. Materials, 2020, vol. 13, no. 18, pp. 4044. https://doi.org/10.3390/ma13184044
32. Klyndyuk A. I., Chizhova E. A. Synthesis and properties of LnBaFeCoO5+δ (Ln – Nd, Sm, Gd). Inorganic Materials, 2013, vol. 49, no. 3, pp. 319–324 (in Russian). https://doi.org/10.1134/S0020168513030084
33. Klyndyuk A. I. Thermal and chemical expansion of LnBaCuFeO5+δ (Ln = La, Pr, Gd) ferrocuprates and LaBa0.75Sr0.25CuFeO5+δ solid solution. Russian Journal of Inorganic Chemistry, 2007, vol. 52, no. 9, pp. 1343–1349 (in Russian). https://doi.org/10.1134/S0036023607090057
34. Klyndyuk A. I., Chizhova E. A. Properties of perovskite-like phases LnBaCuFeO5+δ (Ln – La, Pr). Glass Physics and Chemistry, 2008, vol. 34, no. 3, pp. 313–318 (in Russian). https://doi.org/10.1134/S1087659608030127
35. Malyshkin D., Novikov A., Ivanov I., Sereda V., Tsvetkov D., Zuev A. The origin of triple conductivity and water uptake in layered double perovskites: A case study on lanthanum-substituted GdBaCo2O6−δ. Journal of Alloys and Compounds, 2020, vol. 845, pp. 156309. https://doi.org/10.1016/j.jallcom.2020.156309
36. Chatterjee A., Caicedo J. M., Ballesteros B., Santiso J. In-operando study of chemical expansion and oxygen surface exchange rate in epitaxial GdBaCo2O5.5 electrodes in a solid-state electrochemical cell by time-resolved X-ray diffraction. Journal of Materials Chemistry A, 2018, iss. 26, pp. 12430–12439. https://doi.org/10.1039/C8TA02790K
37. Karen P., Gustafsson K., Linden J. EuBaFe2O5+w: Valence mixing and charge ordering are two separate cooperative phenomena. Journal of Solid State Chemistry, 2007, vol. 180, iss. 1, pp. 148–157. https://doi.org/10.1016/j.jssc.2006.09.031
38. Karen P. Synthesis and equilibrium oxygen nonstoichiometry of PrBaFe2O5+w. Journal of Solid State Chemistry, 2021, vol. 299, pp. 122147. https://doi.org/10.1016/j.jssc.2021.122147
39. Zuev A. Yu, Sereda V. V., Tsvetkov D. S. Defect structure and defect-induced expansion of MIEC oxides – doped lanthanum cobaltites. ECS Transactions, vol. 45, no. 1, pp. 63–73. https://doi.org/10.1149/1.3701293
40. Tsvetkov D. S., Ivanov L., Malyshkin D., Sereda V. V., Zuev A. Y. Mechano-chemical coupling in double perovskites as energy related materials. ECS Transactions, 2016, vol. 72, pp. 21–35. https://doi.org/10.1149/07224.0021ecst
41. Tsvetkov D. S., Sereda V. V., Malyshkin D. A., Ivanov I. L., Zuev A. Yu. Chemical lattice strain in nonstoichiometric oxides: an overview. Journal of Materials Chemistry A, 2022, iss. 12, pp. 6351–6375. https://doi.org/10.1039/d1ta08407k
42. Chen D., Wang F., Shi H., Ran R., Shao Z. Systematic evaluation of Co-free LnBaFe2O5+t (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, vol. 78, pp. 466–474. https://doi.org/10.1016/j.electacta.2012.06.073
43. Kharton V. V., Yaremchenko A. A., Patrakeeva M. V., Naumovich E. N., Marques F. M. B. Thermal and chemical induced expansion of La0.3Sr0.7(Fe,Ga)O3–δ ceramics. Journal of the European Ceramic Society, 2003, vol. 23, iss. 9, pp. 1417–1426. https://doi.org/10.1016/S0955-2219(02)00308-4
44. Bernuy-Lopez C., Høydalsvik K., Einarsrud M.-A., Grande T. Effect of A-Site cation ordering on chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite. Materials, 2016, vol. 9, no. 3, pp. 154. https://doi.org/10.3390/ma9030154
45. Klyndyuk A. I., Zhuravleva Yu. Yu., Gundilovich N. N., Chizhova E. A. Structural, thermal, and electrical properties of solid solutions in the NdBaFeCo0.5Cu0.5O5+δ–NdSrFeCo0.5Cu0.5O5+δ system. Inorganic Materials, 2023, vol. 59, no. 1, pp. 86–92 (in Russian). https://doi.org/10.1134/S0020168523010089
46. Conder K., Pomjakushina E., Soldatov A., Mitberg E. Oxygen content determination in perovskite-type cobaltates. Materials Research Bulletin, 2005, vol. 40, iss. 2, pp. 257–263. https://doi.org/10.1016/j.materresbull.2004.10.009
47. Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. 1976, vol. 32, pp. 751–767. https://doi.org/10.1107/s0567739476001551